Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defying Textbook Science, Study Finds New Role for Proteins

02.01.2015

Open any introductory biology textbook and one of the first things you’ll learn is that our DNA spells out the instructions for making proteins, tiny machines that do much of the work in our body’s cells.

Results from a study published on Jan. 2 in Science defy textbook science, showing for the first time that the building blocks of a protein, called amino acids, can be assembled without blueprints – DNA and an intermediate template called messenger RNA (mRNA). A team of researchers has observed a case in which another protein specifies which amino acids are added.


Janet Iwasa, Ph.D., University of Utah

Caught in the act: Rqc2 protein adds amino acids to a new protein A new finding goes against dogma, showing for the first time that the building blocks of a protein, called amino acids, can be assembled by another protein, and without genetic instructions. The Rqc2 protein (yellow) binds tRNAs (dark blue, teal) which add amino acids (bright spot in middle) to a partially made protein (green). The complex binds the ribosome (white).

“This surprising discovery reflects how incomplete our understanding of biology is,” says first author Peter Shen, Ph.D., a postdoctoral fellow in biochemistry at the University of Utah. “Nature is capable of more than we realize.”

To put the new finding into perspective, it might help to think of the cell as a well-run factory. Ribosomes are machines on a protein assembly line, linking together amino acids in an order specified by the genetic code. When something goes wrong, the ribosome can stall, and a quality control crew is summoned to the site. To clean up the mess, the ribosome is disassembled, the blueprint is discarded, and the partly made protein is recycled.

Yet this study reveals a surprising role for one member of the quality control team, a protein conserved from yeast to man named Rqc2. Before the incomplete protein is recycled, Rqc2 prompts the ribosomes to add just two amino acids (of 20 total) – alanine and threonine - over and over, and in any order. Think of an auto assembly line that keeps going despite having lost its instructions. It picks up what it can and slaps it on: horn-wheel-wheel-horn-wheel-wheel-wheel-wheel-horn.

“In this case, we have a protein, Rqc2, playing a role similar to that of mRNA,” says Adam Frost, M.D., Ph.D., assistant professor at University of California, San Francisco (UCSF) and adjunct professor of biochemistry at the University of Utah. He shares senior authorship with Jonathan Weissman, Ph.D., a Howard Hughes Medical Institute investigator at UCSF, and Onn Brandman, Ph.D., at Stanford University. “I love this story because it blurs the lines of what we thought proteins could do.”

Like a half-made car with extra horns and wheels tacked to one end, a truncated protein with an apparently random sequence of alanines and threonines looks strange, and probably doesn’t work normally. But the nonsensical sequence likely serves specific purposes. The code could signal that the partial protein must be destroyed, or it could be part of a test to see whether the ribosome is working properly. Evidence suggests that either or both of these processes could be faulty in neurodegenerative diseases such as Alzheimer’s, Amyotrophic lateral sclerosis (ALS), or Huntington’s.

“There are many interesting implications of this work and none of them would have been possible if we didn’t follow our curiosity,” says Brandman. “The primary driver of discovery has been exploring what you see, and that’s what we did. There will never be a substitute for that.”

The scientists first considered the unusual phenomenon when they saw evidence of it with their own eyes. They fine-tuned a technique called cryo-electron microscopy to flash freeze, and then visualize, the quality control machinery in action. “We caught Rqc2 in the act,” says Frost. “But the idea was so far-fetched. The onus was on us to prove it.”

It took extensive biochemical analysis to validate their hypothesis. New RNA sequencing techniques showed that the Rqc2/ribosome complex had the potential to add amino acids to stalled proteins because it also bound tRNAs, structures that bring amino acids to the protein assembly line. The specific tRNAs they saw only carry the amino acids alanine and threonine. The clincher came when they determined that the stalled proteins had extensive chains of alanines and threonines added to them.

“Our job now is to determine when and where this process happens, and what happens when it fails,” says Frost.

Shen, Frost, Brandman, and Weissman conducted the work in collaboration with colleagues at the University of Utah (Krishna Parsawar, James Cox), University of California at San Francisco (Xueming Li, Yifan Cheng, Matthew Larson), Stanford University (Joseph Park), and the University of Texas at Austin (Yidan Qin, Alan Lambowitz).

The research was supported by grants from the Searle Scholars program, the National Institutes of Health, the Howard Hughes Medical Institute, Stanford University, and the University of Utah.

Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Peter S. Shen, Joseph Park, Yidan Qin, Xueming Li, Krishna Parsawar, Matthew H. Larson, James Cox, Yifan Cheng, Alan M. Lambowitz, Jonathan S. Weissman, Onn Brandman, Adam Frost. Science, Jan. 2, 2015

Contact Information
Julie Kiefer
801-597-4258
jkiefer@neuro.utah.edu

Julie Kiefer | newswise

Further reports about: Health Sciences acids alanine amino amino acids mRNA proteins quality control ribosome specific

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>