Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep-sea mussels with highly toxic tenants


Bacteria inhabiting deep-sea hot vents as symbiotic tenants of mussels are equipped with a whole arsenal of toxins – more than any known pathogen. Find out about this discovery, and why it is rather healthy than harmful for the mussels, in a new publication by MPI scientists in the open-access journal eLife

Imagine you have a tenant living in your house. They’re keeping your fridge topped up. But in addition to this, they’re producing all kinds of toxic substances. More harm than good? Not necessarily; it all depends what you’re using the toxins for.

Bathymodiolus mussels at the Menez Gwen hydrothermal vent off the Azores, pictured during Meteor cruise M82/3.

MARUM, University of Bremen/Germany

Deep-sea hot vents are one of the most unusual habitats on Earth: At first sight they appear hostile and uninviting, but in fact, they are teeming oases of life. Likewise, their unique inhabitants are always surprising us. Find out how toxic tenants can also be beneficial in a new publication by an international research team led by Jillian Petersen from the Max Planck Institute (MPI) for Marine Microbiology, published in the open-access journal eLife.

Mussels of the genus Bathymodiolus, related to the well-known blue mussel, are among the most dominant inhabitants of hot vents in the deep ocean. In their gills, they house so-called chemoautrotrophic symbionts. These symbionts include sulfur-oxidizing bacteria, which convert substances normally not used by the mussels into tasty sugars.

Jillian Petersen and her colleagues have now taken a closer look at the genes that some of the symbiotic tenants of deep-sea mussels contain in their genomes. To their surprise, what they found was a vast array of hazardous substances. The symbiotic bacteria command an arsenal of genes that are responsible for the production of toxins. The number of toxins is impressive: With up to 60 toxins, the microorganism’s arsenal is better stocked than many nasty germs such as those that cause pest and cholera. However, down in the deep sea, the bacteria leave their host unharmed. In fact, they promote the health of their mussel hosts. How is this possible?

“We suspect that they bacteria have tamed these toxins”, explains Petersen. “Thus, they can now take advantage of them for the benefit their host.” Two kinds of beneficial effects of the toxins are possible: On the one hand, they might help mussels and bacteria to find and to recognize each other, essential steps to establishing a successful symbiosis. On the other hand, the toxins may help the mussel to defend itself against parasites.

“Symbioses are usually assumed to have only one benefit – the symbionts either help the host to feed or to defend itself. Our study shows that the partnership of Bathymodiolus and the sulfur-oxidizing bacteria seems to provide both: defence and food. That is very unusual”, emphasizes Lizbeth Sayavedra, who conducted the research as part of her doctoral thesis. The tenant not only fills the fridge, it also keeps the burglars out.

In the next steps, Petersen now wants to investigate the details of this defence mechanism. The research team has developed a method proving that at least one of the toxins is exported to the mussel tissue. “Our results give fresh impetus to the research on the role of parasites and pathogens in the deep sea”, says Petersen, who has recently established an independent research group at the University of Vienna.

“The Bathymodiolus symbionts produce more of these supposedly harmful substances than any known pathogen”, adds Liz Sayavedra. “Who knows – maybe one day we’ll discover that some of the genes that are currently annotated as toxins may have first evolved through such beneficial interactions.”

Fanni Aspetsberger

Original publication:

Sayavedra et al. (2015) Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015;10.7554/eLife.07966

Weitere Informationen: Website of the MPI Original article

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Further reports about: Deep-sea Max-Planck-Institut genes genomes mussels symbiotic toxic toxins

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>