Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea mussels with highly toxic tenants

22.09.2015

Bacteria inhabiting deep-sea hot vents as symbiotic tenants of mussels are equipped with a whole arsenal of toxins – more than any known pathogen. Find out about this discovery, and why it is rather healthy than harmful for the mussels, in a new publication by MPI scientists in the open-access journal eLife

Imagine you have a tenant living in your house. They’re keeping your fridge topped up. But in addition to this, they’re producing all kinds of toxic substances. More harm than good? Not necessarily; it all depends what you’re using the toxins for.


Bathymodiolus mussels at the Menez Gwen hydrothermal vent off the Azores, pictured during Meteor cruise M82/3.

MARUM, University of Bremen/Germany

Deep-sea hot vents are one of the most unusual habitats on Earth: At first sight they appear hostile and uninviting, but in fact, they are teeming oases of life. Likewise, their unique inhabitants are always surprising us. Find out how toxic tenants can also be beneficial in a new publication by an international research team led by Jillian Petersen from the Max Planck Institute (MPI) for Marine Microbiology, published in the open-access journal eLife.

Mussels of the genus Bathymodiolus, related to the well-known blue mussel, are among the most dominant inhabitants of hot vents in the deep ocean. In their gills, they house so-called chemoautrotrophic symbionts. These symbionts include sulfur-oxidizing bacteria, which convert substances normally not used by the mussels into tasty sugars.

Jillian Petersen and her colleagues have now taken a closer look at the genes that some of the symbiotic tenants of deep-sea mussels contain in their genomes. To their surprise, what they found was a vast array of hazardous substances. The symbiotic bacteria command an arsenal of genes that are responsible for the production of toxins. The number of toxins is impressive: With up to 60 toxins, the microorganism’s arsenal is better stocked than many nasty germs such as those that cause pest and cholera. However, down in the deep sea, the bacteria leave their host unharmed. In fact, they promote the health of their mussel hosts. How is this possible?

“We suspect that they bacteria have tamed these toxins”, explains Petersen. “Thus, they can now take advantage of them for the benefit their host.” Two kinds of beneficial effects of the toxins are possible: On the one hand, they might help mussels and bacteria to find and to recognize each other, essential steps to establishing a successful symbiosis. On the other hand, the toxins may help the mussel to defend itself against parasites.

“Symbioses are usually assumed to have only one benefit – the symbionts either help the host to feed or to defend itself. Our study shows that the partnership of Bathymodiolus and the sulfur-oxidizing bacteria seems to provide both: defence and food. That is very unusual”, emphasizes Lizbeth Sayavedra, who conducted the research as part of her doctoral thesis. The tenant not only fills the fridge, it also keeps the burglars out.

In the next steps, Petersen now wants to investigate the details of this defence mechanism. The research team has developed a method proving that at least one of the toxins is exported to the mussel tissue. “Our results give fresh impetus to the research on the role of parasites and pathogens in the deep sea”, says Petersen, who has recently established an independent research group at the University of Vienna.

“The Bathymodiolus symbionts produce more of these supposedly harmful substances than any known pathogen”, adds Liz Sayavedra. “Who knows – maybe one day we’ll discover that some of the genes that are currently annotated as toxins may have first evolved through such beneficial interactions.”

Fanni Aspetsberger

Original publication:

Sayavedra et al. (2015) Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015;10.7554/eLife.07966

Weitere Informationen:

http://www.mpi-bremen.de Website of the MPI
http://elifesciences.org/content/early/2015/09/14/eLife.07966 Original article

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Further reports about: Deep-sea Max-Planck-Institut genes genomes mussels symbiotic toxic toxins

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>