Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decreasing biodiversity affects productivity of remaining plants

21.04.2015

When plant biodiversity declines, the remaining plants face diminishing productivity, say scientists in study published April 20 in the journal Proceedings of the National Academy of Sciences.

"The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems," said lead author Jingjing Liang, a forest ecologist from West Virginia University.


Empirical evidence from Alaska's boreal forest suggests that every 1 percent reduction in overall plant diversity could render an average of .23 percent decline in individual tree productivity.

Credit: Todd Paris/UAF

Ecosystem services include any positive benefit that plants and animals provide to people including food, fresh water, raw materials and medicinal resources.

A team of scientists, led by Liang, and using data from Alaska's boreal forests developed a model that measures and quantifies the effects of plant productivity resulting from a loss of species diversity.

Previous research focused the positive role biodiversity plays on resource acquisition by plants.

"What also differs our study from previous research is that we developed a theoretical model to quantify the influence of biodiversity on plant productivity at individual plant and community levels," said A. David McGuire, an ecosystem modeler with the U.S. Geological Survey and University of Alaska Fairbanks' Institute of Arctic Biology. "This model enables the scientific community to better integrate biological conservation in natural resource management."

While the world struggles to reduce the loss of biodiversity, concern is mounting over the ongoing relationship between biological conservation and poverty, especially in rural areas where livelihoods depend heavily on ecosystem resources, say the authors.

"The development of our ecological model was inspired and aided by an existing economic theory," Liang said.

According to co-author and WVU economist Mo Zhou, the theory of diminishing marginal productivity in the context of ecology, indicates that marginal resource productivity will at some point decrease as resource acquisition increases.

"We demonstrate that conserving the diversity of plant species may help to maintain ecosystem services for current and future generations," say Liang and Zhou.

###

Jingjing Liang, West Virginia University, School of Natural Resources, Jingjing.Liang@mail.wvu.edu

Mo Zhou, West Virginia University, School of Natural Resources, Mo.Zhou@mail.wvu.edu

Patrick Tobin, University of Washington, School of Environmental and Forest Sciences, pctobin@uw.edu

A. David McGuire, University of Alaska Fairbanks, Institute of Arctic Biology; U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, admcguire@alaska.edu

Peter B. Reich, University of Minnesota, Department of Forest Resources; University of Western Sydney, Hawkesbury Institute for the Environment.

Media Contact

Marie Thoms
methoms@alaska.edu
907-474-7412

 @uafairbanks

http://www.uaf.edu 

Marie Thoms | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>