Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decoding the structure of the huntingtin protein


25 years ago, the cause of Huntington's disease was discovered. Mutations on a single gene, the huntingtin gene, lead to an incorrect form of the correspondent protein. With the help of cryo-electron microscopy, the recently awarded Nobel Prize winning method, researchers have now decoded the three-dimensional, molecular structure of the healthy human huntingtin protein. An improved understanding of the structure and the function of the huntingtin protein could contribute to the development of new treatment methods in the future. The work of the researchers from the Max Planck Institute of Biochemistry in Martinsried and Ulm University has now been published in the journal Nature.

Huntington's disease often begins with emotional disturbances and is characterized by involuntary muscle movement and loss of mental ability. Until today, the neurological disease is one of the hereditary diseases still incurable and fatal. The protein HTT, also called huntingtin, plays the central role in Huntington's disease. For 25 years it has been known that mutations of the huntingtin gene, which is the blueprint for the same protein, cause Huntington's disease.

The protein huntingtin consists of three flexible regions (red, yellow and blue). Stabilized by HAP40 (purple), scientists are able to deduce the structure of huntingtin using cryo-electron microscopy

Illustration: Gabriele Stautner, ARTIFOX © Max Planck Institute of Biochemistry

Although researchers have worked on it for many years, there are still many hurdles to overcome. Now Rubén Fernández-Busnadiego from the Department of Molecular Structural Biology at the MPI of Biochemistry and Stefan Kochanek, head of the Department of Gene Therapy at the University Hospital Ulm, have succeeded in decoding the molecular, three-dimensional structure of the huntingtin protein.

Overcome hurdle

Stefan Kochanek and his team have been working on the production and purification of huntingtin for a long time. What has prevented a detailed analysis of the protein in recent decades? Fernández-Busnadiego, an expert in cryo-electron microscopy, mentions two main factors: "First of all, cryo-electron microscopy has only been optimized in recent years to look at protein structures with almost molecular resolution. The second reason is that the huntingtin protein is very flexible in its structure. Just now, we have found also a solution for this problem."

During the analysis, pictures of the protein are being taken from different perspectives under the microscope. The three-dimensional molecular structure can be computed from the large number of resulting images. For this, the protein must always be in the same conformation. Fernández-Busnadiego explains: "This would be similar to a person being photographed in the dark. If the person does not stand still for a while, the shot will be blurry."

To get a clear picture, the researchers in the Kochanek lab have been looking for other proteins that interact with huntingtin and stabilize it. That worked for the protein HAP40. "Huntingtin in connection with HAP40 is stabilized in a particular conformation. Thus, averaged over many pictures, we were able to derive the three-dimensional structure," said Kochanek. "If we remain in the analogy of the photo in the dark, then the protein acts like a chair for the photographed person. Sitting on it, the person moves much less and the image is much sharper with the same exposure time," adds Fernández-Busnadiego.

Why is the three-dimensional structure of huntingtin needed?

"Although we have known for some time that the mutation of the huntingtin gene has severe consequences, we still know relatively little about the function and tasks of the healthy protein," explains Kochanek. Proteins are the molecular machines of the cell. In order to fulfill their versatile tasks, they have a certain three-dimensional structure, similar to a specific component in a machine.

"Now that we know the exact structure of huntingtin, we can further study which areas of huntingtin are particularly important and how other proteins cooperate with huntingtin functionally. In this way structures could be deduced to be targeted therapeutically by certain drugs."

Right now, there is a lot going on in Huntington's disease research. Great hope is directed to a method, that mutes the huntingtin gene with so-called Antisense-Oligonukleotiden (ASO) for the treatment of Huntington's disease. These small molecules reduce the formation of huntingtin proteins in the cells, but the drug cannot differentiate between the normal and the pathologically altered huntingtin protein. Also for this reason, it is important to learn more about the function of the healthy huntingtin protein. Kochanek confidently looks into the future: "The decoded structure will bring us a big step ahead".

Comment from the clinician

Bernhard Landwehrmeyer is the Director of the Huntington Outpatient Clinic of the Neurology Department at the University Medical Center Ulm and heads the world's largest international cohort study on Huntington's disease (with more than 16,000 participants): "Identifying the structure of huntingtin is a huge step forward for the many families hoping for effective treatment for Huntington's disease. The illness partly arises due to new characteristics of the pathologically changed huntingtin gene products that are the result of the HD mutation, but also in part as a consequence of impaired normal functioning of huntingtin. Now - armed with the knowledge of the architecture of huntingtin - questions about the normal function of huntingtin can be clarified in a much quicker and more tightly focused way, and tailored drugs can be developed that promote normal function."

"The antisense oligonucleotide (ASO) treatment trials are presently only conducted at very few clinics; the Neurological University Clinic Ulm leads the drug testing for Germany. Some of the currently reviewed ASOs reduce both the formation of the normal and the mutant huntingtin protein, while other ASOs predominantly seek to lower the altered huntingtin. It is currently unclear whether a partial inhibition of the formation of normal huntingtin protein has disadvantages and is tolerated without undesirable side effects. This is yet another reason why it is important to learn more about the normal function of the huntingtin protein. To this end, the study published in the journal Nature will make an important contribution."

Original publication:
Q. Guo, B. Huang, J. Cheng, M. Seefelder, T. Engler, G. Pfeifer, P. Oeckl, M. Otto, F. Moser, M. Maurer, A. Pautsch, W. Baumeister, R Fernández-Busnadiego and S. Kochanek: The cryo-EM structure of huntingtin, Nature, February 2018
DOI: 10.1038 / nature25502

Dr. Rubén Fernández-Busnadiego
Molecular Structural Biology
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried

Dr. Christiane Menzfeld
Public Relations
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824

Prof. Dr. Stefan Kochanek
Abteilung Gentherapie
Universitätsklinikum Ulm
Helmholtzstr. 8/1
89081 Ulm

Annika Bingmann
Presse- und Öffentlichkeitsarbeit
Universität Ulm
Helmholtzstraße 16
89081 Ulm
Tel.: 0731-50 22121
Fax.: 0731-50 22048

Weitere Informationen: - More press releases of the MPI of Biochemistry - Website of the research department „"Molecular Structural Biology" - Twitter @MPI_Biochem

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>