Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding the complete genome of the Mediterranean's most emblematic tree: The olive

05.07.2016

A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree

The olive was one of the first trees to be domesticated in the history of mankind, probably some 6,000 years ago. A Mediterranean emblem par excellence, it is of vital importance to the Spanish and other regional economies (Italy, Greece and Portugal). In fact, Spain is the leading producer of olive oil in the world. Every year, nearly three million tons of oil are produced, for local consumption and export. Spain produces one third of this total.


This image shows a sequenced olive tree (Olea europaea).

Credit: Manuel Sánchez, RJB-CSIC

Nonetheless, up to now, the genome of the olive tree were unknown. The genome regulate such factors as the differences among varieties, sizes and flavor of the olives, why the trees live so long or the reasons for their adaptation to dryland farming.

Now a team of researchers from the Centre for Genomic Regulation (CRG) in Barcelona, the Real Jardin Botánico (CSIC-RJB) and the Centro Nacional de Análisis Genómico (CNAG-CRG), has brought new insight to the genetic puzzle of the olive tree, by sequencing the complete genome of this species for the first time ever. The results of this work, fully funded by Banco Santander, have been published this week in the groundbreaking Open Access and Open Data journal GigaScience. The article will pave the way to new research work that will help olive trees in their development and protecting them from infections now causing major damage, such as the attacks of bacteria (Xilella fastidiosa) and fungi (Verticillium dhailae).

... more about:
»DNA »Decoding

"Without a doubt, it is an emblematic tree, and it is very difficult to improve plant breeding, as you have to wait at least 12 years to see what morphological characteristics it will have, and whether it is advisable to cross-breed," says principal author of this paper Toni Gabaldón, ICREA research professor and head of the comparative genomics laboratory at the CRG. "Knowing the genetic information of the olive tree will let us contribute to the improvement of oil and olive production, of major relevance to the Spanish economy," he adds.

Private funding to support public science

The story of this project begins with a presentation, a coincidence and a challenge. Four years ago, Gabaldón worked with Pablo Vargas, a CSIC researcher at the Real Jardín Botánico, on the presentation of scientific results of projects focused on endangered species, such as the Iberian lynx, that had been financed by Banco Santander.

At that time, Banco Santander had expressed great interest in financing scientific projects in Spain. Over the course of the presentation, Pablo Vargas proposed to Emilio Botín the complete sequencing of the olive tree genome, using the same technology as had been used to sequence the lynx; in other words, the most state-of-the-art technological strategy to achieve a high-quality genome.

Five months after that meeting, a contract was signed to carry out the first complete sequencing of the olive tree's DNA, a three-year research effort coordinated by Pablo Vargas.

"There are three phases to genome sequencing: first, isolate all of the genes, which we published two years ago. Second, assemble the genome, which is a matter of ordering those genes one after the other, like linking up loose phrases in a book. Last, identify all of the genes, or binding the book. The latter two phases are what we have done and are now presenting," says the CSIC Real Jardín Botánico researcher.

To continue with the book analogy, according to Tyler Alioto of the CNAG-CRG "this genome has generated some 1.31 billion letters, and over 1,000 GBytes of data. We are surprised because we have detected over 56,000 genes, significantly more than those detected in sequenced genomes of related plants, and twice that of the human genome."

Decoding its evolutionary history

In addition to the complete sequencing of the olive tree genome, researchers have also compared the DNA of this thousand-year-old tree with other varieties such as the wild olive. They have also found the transcriptome, the genes expressed to determine what differences exist on the genetic expression level in leaves, roots and fruits at different stages of ripening.

The next step, researchers say, will be to decode the evolutionary history of this tree, which has formed part of old-world civilizations since the Bronze Age. At that time, in the eastern Mediterranean, the process of domesticating wild olive trees that led to today's trees began. Later, selection processes in different Mediterranean countries gave rise to the nearly 1,000 varieties of trees we have today.

Knowing the evolution of olive trees from different countries will make it possible to know their origins and discover the keys that have allowed it to adapt to very diverse environmental conditions. It will also help discover the reasons behind its extraordinary longevity, as the trees can live for 3,000 to 4,000 years.

"That longevity makes the olive tree we have sequenced practically a living monument," says Gabaldón. "Up to now, all of the individuals sequenced, from the fruit fly (Drosophila melanogaster) to the first human being analyzed, have lived for a certain time, depending on their life expectancy, but then died or will die. This is the first time that the DNA of an individual over 1,000 years old, and that will probably live another 1,000 years, has been sequenced." say Gabaldón and Vargas.

Media Contact

Laia Cendros
laia.cendros@crg.eu
34-607-611-798

 @CRGenomica

http://www.crg.es 

Laia Cendros | EurekAlert!

Further reports about: DNA Decoding

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>