Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding DNA’s annotations

23.01.2012
A chemical probe that can differentiate between chemical tags adorning DNA could provide insights into how nature switches genes on and off

In the currently hot research area known as ‘epigenetics’, researchers are discovering that offspring inherit much more from their parents than just their genes. Individuals also inherit detailed instructions on how to use the genetic sequence coded in their DNA via small chemical, or epigenetic, markers that decorate DNA strands.


Figure 1: The Sp1 peptide probe (left) binds a DNA strand (right) and reveals the presence of an epigenetic marker that is a methyl group (purple). Copyright : 2011 Akimitsu Okamoto

The markers can activate some genes and switch off others. Epigeneticists are racing to decode the roles of different markers; but, first, they must develop the ability to read them. A new chemical probe, developed by a research team led by Akimitsu Okamoto at the RIKEN Advanced Science Institute, Wako, is showing promise as an analytical tool to assist this quest1.

The team’s probe can differentiate between two epigenetic markers—methyl and hydroxymethyl markers—that differ by the presence of a single oxygen atom. Methyl groups, one of the first epigenetic markers discovered, are known to inactivate gene expression; ‘demethylation’, or removal of a methyl group from the DNA, allows gene expression to restart.

“We know the mechanism of DNA methylation, but nobody knows the mechanism of DNA demethylation,” Okamoto explains. One possibility is that the body converts the methyl marker into a hydroxymethyl group, as the first step in the process of removing it, in preparation to reactivate a gene. However, current tests cannot distinguish between the two epigenetic markers, preventing that theory from being tested.

The chemical probe developed by Okamoto and colleagues is based on a peptide called Sp1, which is known to bind to DNA. The researchers previously modified the structure of Sp1 so that it adheres strongly only to DNA strands incorporating a methyl marker (Fig. 1). They then showed that if the peptide binds to a DNA strand, it reveals the presence of the methyl group2.
In their latest study, the researchers showed that modified Sp1 will not bind to DNA when the methyl group is converted to a hydroxymethyl—thereby allowing them to tell the two groups apart. The extra oxygen atom in the hydroxymethyl group disrupts the interaction between the peptide and the DNA, so the two cease to adhere together.

Okamoto and his colleagues are now planning to modify the peptide to detect an even wider range of epigenetic markers, which will allow the study of their role in gene expression. “Our next step is to develop the methods for effective sequencing and detection of DNA containing cytosine, 5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine,” Okamoto says.

The corresponding author for this highlight is based at the Nucleic Acid Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>