Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decisive steps in the initiation of programmed cell death revealed

17.08.2015

Tübingen researchers have studied the formation of membrane pores that are critical to start the apoptosis program

When cells age or suffer damage, they are able to actively bring about their own pre-programmed death – a “suicide” process known as apoptosis. A desensitization of this process determines the change from a normal cell into a cancer cell. On the other hand, an over-functioning of apoptosis is associated to the onset of neurodegenerative diseases.

Therefore a better understanding of the underlying mechanisms is extremely important. The protein Bax is known as a key regulator of apoptosis. Researchers headed by Professor Ana García-Sáez of the University of Tübingen and Professor Joachim Spatz of the Max Planck Institute for Intelligent Systems in Stuttgart have investigated the role of Bax proteins, finding more detailed information as to how they work. The findings are published in the latest "Nature Communications".

The key step in apoptosis is the release of the protein cytochrome c and other apoptotic factors from the mitochondria into the cell interior. After this step, apoptosis induction is irreversible and cell’s fate is sealed. In order to allow this process, the mitochondrial membrane must be permeable. The research team has examined how the mitochondrial membrane becomes permeable.

Their experiments on artificial membrane systems showed that the Bax protein initially is inserted into the membrane as a single molecule. Once inserted, these monomers join up in the shortest time with a second molecule of Bax to form a stable complex, the so-called Bax dimers. From these dimers larger complexes are formed.

“Surprisingly, Bax complexes have no standard size, but we observed a mixture of different-sized Bax species”, says Dr. Katia Cosentino, a member of Professor García-Sáez team, “and these species are mostly based on dimer units”. These Bax complexes form the pores through which the cytochrome c exits the mitochondrial membrane.

The process of pore formation is finely controlled by other proteins. Some enable the assembly of Bax-elements, while others induce their dismantling. “The differing size of the Bax complexes in the pore formation is likely part of the reason why earlier investigations on pore formation conveyed in contradictory results” says Katia Cosentino.

The researchers can now make some initial recommendations for medical intervention in the apoptotic process: In order to promote this cell “suicide,” it should be enough to initiate the first step of activating Bax proteins – because the subsequent steps of self-organization will then happen automatically. Conversely, from these new insights into the mechanism of pore formation can be concluded that apoptosis can be prevented when drugs force the dismantling of the Bax-dimers into their individual elements.

Publication:
Yamunadevi Subburaj, Katia Cosentino, Markus Axmann, Esteban Pedrueza-Villalmanzo, Eduard Hermann, Stephanie Bleicken, Joachim Spatz and Ana J. García-Sáez: Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nature Communications, 14 August 2015, doi:10.1038/ncomms9042.

Contact:
Professor Dr. Ana J. García-Sáez
University of Tübingen
Interfaculty Institute of Biochemistry
Phone +49 7071 29-73318
ana.garcia[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>