Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the motility apparatus of bacteria

13.03.2017

HZI scientists elucidate how bacteria assemble flagella outside the cell

Many bacteria move by rotating long, thin filaments called flagella. Flagella are made of several tens of thousands building blocks outside the bacterial cell and grow up to ten times longer than the bacterial cell body. They allow bacteria to swim towards a nutrient source or to approach cells of the human mucosa in order to infect them.


Salmonellae with dye-stained flagella. Each colour marks a section of the flagella that grew in a defined time interval (blue: Salmonellae).

HZI/Renault et al.

This means that flagella are also tools in infection processes and might be suitable as potential targets for new agents against pathogenic bacteria. The details of how flagella are assembled and how this process might be inhibited remained elusive. Scientists of the Helmholtz Centre for Infection Research (HZI) in Braunschweig now elucidated this mechanism using real-time observations of growing flagella. The researchers published their results in the freely accessible journal, eLife.

Even for bacteria it is not satisfactory to just drift through life: Because every day is full of situations, in which a bacterium needs to move actively in its environment – for example when it searches for food or a suitable host. Under these circumstances, the bacterium forms flagella – i.e long, rotating filaments that can be used like a propeller to propel the bacterium.

Bacteria use certain sensors to measure chemical signals in their environment and then use these signals to control the direction of rotation of the flagella. For example salmonellae form flagella when they detect copious amounts of nutrients: They interpret this as evidence that they are inside the intestine of their host.

Then they use their flagellar propulsion system to swim through the mucous layer of the intestinal mucosa to reach the cells of the intestinal wall and then penetrate them, which ultimately leads to an infection. Bacteria of the Escherichia coli genus show the opposite response: They form flagella only if they measure too little nutrients in order to be able to swim to a new nutrient source.

Flagella can be up to 20 µm in length, which is one 50th of a millimetre. The bacterial cell body is only 2 µm in length and the bacteria initiate the production of flagella by building a protein pump in their membrane, which simultaneously serves as an anchor for the flagellum. To build the long, external filament the pump excretes a large number of building blocks of a single protein called flagellin into the tube-like structure. The flagellin units travel through the tube structure until they reach the tip of the filament, where they self-assemble outside the cell and thereby elongate the flagellum.

"The pump uses energy derived from an ion and charge difference across the inner membrane for the secretion of flagellin building blocks," says Dr Marc Erhardt, who is the head of the "Infection Biology of Salmonella" junior research group at the Helmholtz Centre for Infection Research (HZI). "But, until now, it was not known how this highly complex structure assembles outside the cell from thousands of simple components and which energy source drives the secretion process."

To solve this puzzle, Marc Erhardt's team observed the growth of individual flagella. In one of the experiments, they labelled flagellin components of salmonellae with fluorescent antibodies. They induced the bacteria to form flagella, then they excited the dye to emit light and watching through the microscope recorded the growth of the flagella. This allowed them to detect that the growth rate of flagella decreased the longer the filaments got. "A previously accepted model described a mechanism, in which the flagella would always grow at the same rate regardless of their length," says Erhardt. "However, our observations in real-time showed that the growth rate decreases with the length of the filament and that there must be a different underlying mechanism."

This result was confirmed by another experiment: As before, the scientists made salmonellae produce flagella and then dyed the flagellin components with various fluorescent dyes while the flagellum was growing. They always changed the dye after a predetermined period of time – for example every 30 minutes. Ultimately, they were able to determine that the flagellar sections formed in the first time interval were the longest and that the sections formed in subsequent intervals kept getting shorter.

"We explain these results to mean that the pump – i.e. the export system – permanently pumps flagellin from the bacterial cell into the tube of the flagellum and therefore the filament can grow rapidly when short," says Marc Erhardt. "With the filament getting longer, the flagellin units need more time to get from the pump to the end and accordingly, the growth slows down." Since there is no transport system for these components, they diffuse through the flagellum – which means they kind of drift along. With increasing distance to cover, this takes longer and longer which provides a simple explanation why flagella do not grow indefinitely.

This mechanism is also supported by a mathematic model based on the measured values of the researchers from the microscopy experiments for input. "The flagellar protein pump is related to other secretory systems of bacteria, which transport toxins into host cells during an infection," says Erhardt. "Our results also provide explanations for the protein export by these molecular syringes."

The researchers of the HZI aim to specifically eliminate such virulence factors, which are needed by many bacterial pathogens to infect host cells. For this purpose, they are looking for suitable agents that interfere with the formation or function of these nanomachines to disarm pathogenic bacteria.

Original publication:
Thibaud T. Renault, Anthony O. Abraham, Tobias Bergmiller, Guillaume Paradis, Simon Rainville, Emmanuelle Charpentier, Călin C. Guet, Yuhai Tu, Keiichi Namba, James P. Keener, Tohru Minamino, and Marc Erhardt: Bacterial flagella grow through an injection-diffusion mechanism. eLife 2017; DOI: 10.7554/eLife.23136

The press release and a picture are available on our website: https://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/decipheri...

The Helmholtz Centre for Infection Research:
Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de/en

Contact:
Susanne Thiele, Press Officer
susanne.thiele@helmholtz-hzi.de
Dr Andreas Fischer, Editor
andreas.fischer@helmholtz-hzi.de

Helmholtz Centre for Infection Research
Press and Communications
Inhoffenstr. 7
D-38124 Braunschweig
Germany

Phone: +49 531 6181-1404

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>