Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering potent DNA toxin's secrets

03.08.2017

One of the most potent toxins known acts by welding the two strands of the famous double helix together in a unique fashion which foils the standard repair mechanisms cells use to protect their DNA.

A team of Vanderbilt University researchers have worked out the molecular details that explain how this bacterial toxin -- yatakemycin (YTM) -- prevents DNA replication. Their results, described in a paper published online July 24 by Nature Chemical Biology, explain YTM's extraordinary toxicity and could be used to fine-tune the compound's impressive antimicrobial and antifungal properties.


Molecular model of the lesion that the bacterial toxin yatakemycin forms on DNA.

Credit: Elwood Mullins, Vanderbilt University

YTM is produced by some members of the Streptomyces family of soil bacteria to kill competing strains of bacteria. It belongs to a class of bacterial compounds that are currently being tested for cancer chemotherapy because their toxicity is extremely effective against tumor cells.

"In the past, we have thought about DNA repair in terms of protecting DNA against different kinds of chemical insults," said Professor of Biological Sciences Brandt Eichman. "Now, toxins like YTM are forcing us to consider their role as part of the ongoing chemical warfare that exists among bacteria, which can have important side effects on human health."

Cells have developed several basic types of DNA repair, including base excision repair (BER) and nucleotide excision repair (NER). BER generally fixes small lesions and NER removes large, bulky lesions.

A number of DNA toxins create bulky lesions that destabilize the double helix. However, some of the most toxic lesions bond to both strands of DNA, thereby preventing the cell's elaborate replication machinery from separating the DNA strands so they can be copied. Normally, this distorts the DNA's structure, which allows NER enzymes to locate the lesion and excise it.

"YTM is different," said postdoctoral fellow Elwood Mullins. "Instead of attaching to DNA with multiple strong covalent bonds, it forms a single covalent bond and a large number of weaker, polar interactions. As a result, it stabilizes the DNA instead of destabilizing it, and it does so without distorting the DNA structure so NER enzymes can't find it."

"We were shocked by how much it stabilizes DNA," Eichman added. "Normally, the DNA strands that we used in our experiments separate when they are heated to about 40 degrees [Celsius] but, with YTM added, they don't come apart until 85 degrees."

The Streptomyces bacteria that produce YTM have also evolved a special enzyme to protect their own DNA from the toxin. Surprisingly, this is a base excision repair enzyme -- called a DNA glycosylase -- that is normally limited to repairing small lesions, not the bulky adducts caused by YTM. Nevertheless, studies have shown that it is extremely effective.

It so happens that one of Streptomyces' competitors, Bacillus cereus, has managed to co-opt the gene that produces this particular enzyme. In Bacillus, however, the enzyme it produces -- called AlkD -- provides only limited protection.

In 2015, Eichman and Mullins reported that, unlike other BER enzymes, AlkD can detect and excise YTM lesions. At the time, they had no idea why it wasn't as effective as its Streptomyces counterpart. Now they do. It turns out that AlkD tightly binds the product that it forms from a YTM lesion, inhibiting the downstream steps in the BER process that are necessary to fully return the DNA to its original, undamaged state. This drastically reduces the effectiveness of the repair process as a whole.

In recent years, biologists have discovered that animals and plants host thousands of different species of commensal bacteria and this microscopic community, called the microbiome, plays a surprisingly important role in their health and well-being. Normally, these bacteria are beneficial -- for example, converting indigestible foods into digestible forms--but they can also cause problems, such as the stomach bacteria Heliobacter pylori that can cause inflammation that produces ulcers.

"We know that bacteria produce compounds like YTM when they are under stress," Eichman observed. "The negative effects this has on their hosts is an unfortunate side effect. So it is very important that we learn as much as we can about how these bacterial toxins work and how bacteria defend against them."

###

Graduate research assistant Rongxin Shi also participated in the research, which was funded by National Science Foundation grant MCB-1517695, National Institutes of Health grant R01 ES019625 and Department of Energy's Office of Science grant DE-AC02-06CH11357.

David F Salisbury | EurekAlert!

Further reports about: DNA DNA repair DNA strands Streptomyces Vanderbilt bacteria enzyme

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>