Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deceptive woodpecker uses mimicry to avoid competition

12.08.2015

Birds of a feather may flock together, but that doesn't mean they share a genetic background. Though birds were first classified into groups primarily based on appearance, research forthcoming in The Auk: Ornithological Advances by Brett Benz of the American Museum of Natural History, Mark Robbins of the University of Kansas Biodiversity Institute, and Kevin Zimmer of the Los Angeles County Museum of Natural History demonstrates that this method isn't necessarily accurate: in a group of very similar-looking South American woodpecker species, genetic analysis has now shown one to be only a distant cousin of the others, in an intriguing case of visual mimicry. By copying the appearance of larger, socially dominant woodpecker species, it reduces the aggression and competitive interference that it receives from them and has more access to food resources as a result.

The most familiar type of mimicry typically involves warning or "aposematic" coloration, in which a harmless species apes the color patterns of a dangerous or unappealing one to avoid predators; a famous instance is the Viceroy butterfly, which shares the striking colors of the more noxious Monarch. By contrast, the Helmeted Woodpecker (Dryocopus galeatus) represents an example of a different and less well understood form of mimicry, known as interspecific social dominance mimicry or ISDM.


Dryocopus galeatus (left) appears remarkably similar to Dryocopus lineatus erythrops (center) and Campephilus robustus (right), but it's only a distant relative.

Credit: K. Zimmer and R.J. Moller

The shy and little-known species shares the red crest, black back, and barred underside of two larger woodpeckers Dryocopus lineatus and Campephilus robustus, all of which occupy the same habitat and share similar food preferences.

The Helmeted Woodpecker's similarity in appearance makes the larger, more dominant woodpecker species less likely to attack it, due to the costs of aggression between members of the same species. Though they had been previously classified in Dryocopus due to the remarkable similarities in their appearance, genetic analysis by Benz and his colleagues suggests that the Helmeted Woodpecker is actually not closely related to other Dryocopus woodpeckers at all and belongs in a different genus, Celeus. An independent group of researchers using the same data recently reported similar results in a paper published in the Journal of Ornithology.

"Co-author Mark Robbins and I had just finished a phylogenetic study examining species limits and vocalizations in Celeus woodpeckers when Mark, who was attending a meeting in Brazil, had the opportunity to observe a Helmeted Woodpecker at Intervales State Park," according to Benz.

"Upon hearing the bird vocalize, Mark was stunned that its call sounded nothing like Neotropical Dryocopus, and immediately knew we needed to examine its taxonomic status in the context of our recent Celeus study given that the Helmeted Woodpecker calls were most similar to several other Celeus species.

Upon returning from Brazil, Mark consulted with co-author Kevin Zimmer, who had independently arrived at the same conclusions about the Helmeted Woodpecker belonging with Celeus, based on his behavioral observations spanning 20 years of fieldwork in Brazil." As Benz puts it, "The Helmeted Woodpecker is basically a typical Celeus in Dryocopus clothing."

"After several decades working on the discovery of the avian Tree of Life, it is still amazing what we are discovering! Reconstructing the phylogeny of these woodpeckers has corrected a century-old classification mistake, but more interestingly, it has revealed an unexpected new example of avian mimicry," adds Richard Prum of Yale University, one of the originators of the ISDM hypothesis.

"It has only recently been appreciated that small species may benefit from deceptively mimicking larger species to protect themselves from aggressive attack. This is similar to how a 12-year-old kid walking home from school will look and act tough to try to prevent himself from being harassed by older, bigger kids."

Relatively little is known about the ecology and natural history of the Helmeted Woodpecker, which is found in Brazil, Paraguay, and Argentina, but it has experienced dramatic population declines and vanished from much of its former range due to deforestation. Hopefully, this new discovery about its evolutionary relationships and visual deception may increase interest in the species, as it provides an opportunity for scientists to further test predictions associated with ISDM. Ultimately, bringing the Helmeted Woodpecker's sneaky strategy into the light may be what saves it from oblivion.

###

"Phylogenetic relationships of the Helmeted Woodpecker (Dryocopus galeatus): A case of interspecific mimicry?" will be published on September 30, 2015, and will be available at http://www.aoucospubs.org/toc/tauk/132/4; a pre-print version is available at http://dx.doi.org/10.1101/023663.

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology that began in 1884 as the official publication of the American Ornithologists' Union. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

Media Contact

Rebecca Heisman
aoucospubs@gmail.com

http://www.aoucospubs.org 

Rebecca Heisman | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>