Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deceptive woodpecker uses mimicry to avoid competition

12.08.2015

Birds of a feather may flock together, but that doesn't mean they share a genetic background. Though birds were first classified into groups primarily based on appearance, research forthcoming in The Auk: Ornithological Advances by Brett Benz of the American Museum of Natural History, Mark Robbins of the University of Kansas Biodiversity Institute, and Kevin Zimmer of the Los Angeles County Museum of Natural History demonstrates that this method isn't necessarily accurate: in a group of very similar-looking South American woodpecker species, genetic analysis has now shown one to be only a distant cousin of the others, in an intriguing case of visual mimicry. By copying the appearance of larger, socially dominant woodpecker species, it reduces the aggression and competitive interference that it receives from them and has more access to food resources as a result.

The most familiar type of mimicry typically involves warning or "aposematic" coloration, in which a harmless species apes the color patterns of a dangerous or unappealing one to avoid predators; a famous instance is the Viceroy butterfly, which shares the striking colors of the more noxious Monarch. By contrast, the Helmeted Woodpecker (Dryocopus galeatus) represents an example of a different and less well understood form of mimicry, known as interspecific social dominance mimicry or ISDM.


Dryocopus galeatus (left) appears remarkably similar to Dryocopus lineatus erythrops (center) and Campephilus robustus (right), but it's only a distant relative.

Credit: K. Zimmer and R.J. Moller

The shy and little-known species shares the red crest, black back, and barred underside of two larger woodpeckers Dryocopus lineatus and Campephilus robustus, all of which occupy the same habitat and share similar food preferences.

The Helmeted Woodpecker's similarity in appearance makes the larger, more dominant woodpecker species less likely to attack it, due to the costs of aggression between members of the same species. Though they had been previously classified in Dryocopus due to the remarkable similarities in their appearance, genetic analysis by Benz and his colleagues suggests that the Helmeted Woodpecker is actually not closely related to other Dryocopus woodpeckers at all and belongs in a different genus, Celeus. An independent group of researchers using the same data recently reported similar results in a paper published in the Journal of Ornithology.

"Co-author Mark Robbins and I had just finished a phylogenetic study examining species limits and vocalizations in Celeus woodpeckers when Mark, who was attending a meeting in Brazil, had the opportunity to observe a Helmeted Woodpecker at Intervales State Park," according to Benz.

"Upon hearing the bird vocalize, Mark was stunned that its call sounded nothing like Neotropical Dryocopus, and immediately knew we needed to examine its taxonomic status in the context of our recent Celeus study given that the Helmeted Woodpecker calls were most similar to several other Celeus species.

Upon returning from Brazil, Mark consulted with co-author Kevin Zimmer, who had independently arrived at the same conclusions about the Helmeted Woodpecker belonging with Celeus, based on his behavioral observations spanning 20 years of fieldwork in Brazil." As Benz puts it, "The Helmeted Woodpecker is basically a typical Celeus in Dryocopus clothing."

"After several decades working on the discovery of the avian Tree of Life, it is still amazing what we are discovering! Reconstructing the phylogeny of these woodpeckers has corrected a century-old classification mistake, but more interestingly, it has revealed an unexpected new example of avian mimicry," adds Richard Prum of Yale University, one of the originators of the ISDM hypothesis.

"It has only recently been appreciated that small species may benefit from deceptively mimicking larger species to protect themselves from aggressive attack. This is similar to how a 12-year-old kid walking home from school will look and act tough to try to prevent himself from being harassed by older, bigger kids."

Relatively little is known about the ecology and natural history of the Helmeted Woodpecker, which is found in Brazil, Paraguay, and Argentina, but it has experienced dramatic population declines and vanished from much of its former range due to deforestation. Hopefully, this new discovery about its evolutionary relationships and visual deception may increase interest in the species, as it provides an opportunity for scientists to further test predictions associated with ISDM. Ultimately, bringing the Helmeted Woodpecker's sneaky strategy into the light may be what saves it from oblivion.

###

"Phylogenetic relationships of the Helmeted Woodpecker (Dryocopus galeatus): A case of interspecific mimicry?" will be published on September 30, 2015, and will be available at http://www.aoucospubs.org/toc/tauk/132/4; a pre-print version is available at http://dx.doi.org/10.1101/023663.

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology that began in 1884 as the official publication of the American Ornithologists' Union. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

Media Contact

Rebecca Heisman
aoucospubs@gmail.com

http://www.aoucospubs.org 

Rebecca Heisman | EurekAlert!

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>