Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decaying RNA molecules tell a story


Once messenger RNA (mRNA) has done its job - conveying the information to produce the proteins necessary for a cell to function - it is no longer required and is degraded. Scientists have long thought that the decay started after translation was complete and that decaying RNA molecules provided little biological information.

Now a team from EMBL Heidelberg and Stanford University led by Lars Steinmetz has turned this on its head in an article published in Cell. The researchers have shown that one end of the mRNA begins to decay while the other is still serving as a template for protein production. Thus, studying the decaying mRNA also provides a snapshot of how proteins are produced.

The enzyme that degrades messenger RNA follows the ribosomes and stops every 3 nucleotides.

Credit: V.Pelechano/EMBL

The discovery was made almost by accident. As part of research into how DNA is transcribed into mRNA, co-researchers Vicent Pelechano and Wu Wei developed an in vivo method to count decaying mRNA molecules in the cell. mRNA has a protective 'cap' that prevents it from being degraded - once that cap is removed, the decay begins. The researchers spotted a pattern in the distribution of the 'cap-less' RNA that they didn't expect.

Vicent Pelechano, from the Steinmetz group at EMBL Heidelberg, explains: "The decaying RNA was thought to be of little interest biologically, so we were really surprised to see a pattern. We looked more deeply into it because it appeared to be linked to the genetic code, but we never expected it to lead to a completely new understanding of how mRNA and ribosomes interact."

Proteins are produced from mRNA by ribosomes - 'molecular machines' that pass successively along the mRNA to translate its nucleotides into amino acids. It was thought that the mRNA only started to decay once the final ribosome had left it and translation was complete. In fact, the researchers were able to determine that the protective 'cap' is removed and degradation begins even while ribosomes are still associated with the mRNA.

They demonstrated that the enzyme degrading mRNA follows closely behind the ribosome, pausing at set points along the mRNA, usually after each group of 3 nucleotides, the section of code that relates to one amino acid. The team believes that this shows the enzyme pausing while translation goes on - allowing the ribosome to do its work and move on - before starting to degrade the mRNA previously protected by the ribosome.

This novel approach also opens up new avenues to study ribosomes. "Researchers studying ribosome activity usually use drugs to stall the ribosomes in place. This can alter the way we perceive their activity. We are simply looking for the molecules remaining from mRNA decay and determining their distribution. We believe this shows a more accurate picture of what is happening to the mRNA and the ribosome than was previously possible," explains Wu Wei of Stanford University.

Media Contact

Isabelle Kling


Isabelle Kling | EurekAlert!

More articles from Life Sciences:

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>