Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death for life – The Leishmania parasite needs dead competitors to outwit the immune system

24.03.2015

Researchers at the Paul-Ehrlich-Institut have found out how unicellular parasites succeed in tricking our immune system. To be successful, live and dead leishmania parasites must enter the host cells simultaneously. The dead Leishmania are degraded in the cell by means of a self-digestion mechanism (autophagy). This sets off a process that prevents activation of specific immune cells (T cells). A report on the results of this research is available in the online version of Autophagy of 24 March 2015.

The human body has a highly efficient immune system, which recognises bacteria, viruses or parasites that enter the organism as “non-self” and kills them. Leishmania escape this mechanism, thus being able to replicate in the human organism unrecognised by the immune system. The parasites are transmitted by sand flies and cause Leishmaniasis, a disease which above all occurs in tropical regions, the Mediterranean and Asia. However, sand flies are increasingly moving north and have in the meantime also been found in Germany.


Parasitic altruism disables an effective immune response by activating autophagy

Paul-Ehrlich-Institut

Why the immune system is unable to stop the parasites has so far been unclear. The research team of Professor Dr Ger van Zandbergen, head of the Division Immunology at the Paul-Ehrlich-Institut (PEI) and of Peter Crauwels, who is also a member of this Division, found new mechanisms of immune evasion.

Living Leishmania parasites ensure their intracellular survival depending on simultaneous presence of dead Leishmania. In this context, a process called autophagy plays an important part. This process is a digestion mechanism in the human cell which normally serves to provide energy to this cell on a short-term basis in stress situations by degrading cell components. This mechanism can also serve to degrade viruses, bacteria, and foreign proteins.

The PEI researchers have now discovered that Leishmania are digested by the autophagy pathway, which, however, in this case is fatal to the human cell: The defence mechanism of the adaptive immune system against the Leishmania is deactivated. Another peculiarity is that only Leishmania which are already dead can be digested by autophagy thus being able to outwit the immune defence mechanism. If, on the other hand, only live Leishmania enter the cell, this inhibition of the immune system does not take place. In this case, strikingly more specific immune cells of the blood, so-called T cells, are formed which ascertain that the Leishmania are killed.

The researchers have also found out that the ratio of dead to live parasites is roughly 1:1. But where do the dead Leishmania come from? A possible explanation could be that the parasites are transmitted by sand flies which consume food only once a week. Only half the parasites may survive this interval in the stomach of the sand fly before the contents of the stomach with the dead and live parasites is transmitted by the bite of the sand fly.

Another intriguing result of this team’s research is that the specific T cell response against Leishmania was established without exception in blood samples of more than 80 healthy donors who never had any contact with Leishmania. This contradicts the central postulate that adaptive immune response triggering the formation of specific T cells is only set off after prior contact with a certain pathogenic agent. “We have found an existing immune response mechanism against a parasite with which no previous contact took place“, as Professor van Zandbergen summarised the surprising results of the research.

Can the research results be used therapeutically? “Autophagy is not only an interesting immune response mechanism for infections but also for tumours. Active substances are currently developed with which autophagy can be triggered or deactivated. Such medicinal products could also be effective in the case of Leishmaniasis infections” explained Zandbergen.

Original publication: Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G (2014): Apoptotic-like Leishmania exploit the host´s autophagy machinery to reduce T-cell 1 mediated parasite elimination. Autophagy (DOI:10.1080/15548627.2014.998904)

Weitere Informationen:

http://www.tandfonline.com/doi/abs/10.1080/15548627.2014.998904?journalCode=kaup... Link to the online abstract of this article
http://www.pei.de/EN/information/journalists-press/press-releases/2015/05-death-... Link to the press release of the Paul-Ehrlich-Institut

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>