Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Death for life – The Leishmania parasite needs dead competitors to outwit the immune system


Researchers at the Paul-Ehrlich-Institut have found out how unicellular parasites succeed in tricking our immune system. To be successful, live and dead leishmania parasites must enter the host cells simultaneously. The dead Leishmania are degraded in the cell by means of a self-digestion mechanism (autophagy). This sets off a process that prevents activation of specific immune cells (T cells). A report on the results of this research is available in the online version of Autophagy of 24 March 2015.

The human body has a highly efficient immune system, which recognises bacteria, viruses or parasites that enter the organism as “non-self” and kills them. Leishmania escape this mechanism, thus being able to replicate in the human organism unrecognised by the immune system. The parasites are transmitted by sand flies and cause Leishmaniasis, a disease which above all occurs in tropical regions, the Mediterranean and Asia. However, sand flies are increasingly moving north and have in the meantime also been found in Germany.

Parasitic altruism disables an effective immune response by activating autophagy


Why the immune system is unable to stop the parasites has so far been unclear. The research team of Professor Dr Ger van Zandbergen, head of the Division Immunology at the Paul-Ehrlich-Institut (PEI) and of Peter Crauwels, who is also a member of this Division, found new mechanisms of immune evasion.

Living Leishmania parasites ensure their intracellular survival depending on simultaneous presence of dead Leishmania. In this context, a process called autophagy plays an important part. This process is a digestion mechanism in the human cell which normally serves to provide energy to this cell on a short-term basis in stress situations by degrading cell components. This mechanism can also serve to degrade viruses, bacteria, and foreign proteins.

The PEI researchers have now discovered that Leishmania are digested by the autophagy pathway, which, however, in this case is fatal to the human cell: The defence mechanism of the adaptive immune system against the Leishmania is deactivated. Another peculiarity is that only Leishmania which are already dead can be digested by autophagy thus being able to outwit the immune defence mechanism. If, on the other hand, only live Leishmania enter the cell, this inhibition of the immune system does not take place. In this case, strikingly more specific immune cells of the blood, so-called T cells, are formed which ascertain that the Leishmania are killed.

The researchers have also found out that the ratio of dead to live parasites is roughly 1:1. But where do the dead Leishmania come from? A possible explanation could be that the parasites are transmitted by sand flies which consume food only once a week. Only half the parasites may survive this interval in the stomach of the sand fly before the contents of the stomach with the dead and live parasites is transmitted by the bite of the sand fly.

Another intriguing result of this team’s research is that the specific T cell response against Leishmania was established without exception in blood samples of more than 80 healthy donors who never had any contact with Leishmania. This contradicts the central postulate that adaptive immune response triggering the formation of specific T cells is only set off after prior contact with a certain pathogenic agent. “We have found an existing immune response mechanism against a parasite with which no previous contact took place“, as Professor van Zandbergen summarised the surprising results of the research.

Can the research results be used therapeutically? “Autophagy is not only an interesting immune response mechanism for infections but also for tumours. Active substances are currently developed with which autophagy can be triggered or deactivated. Such medicinal products could also be effective in the case of Leishmaniasis infections” explained Zandbergen.

Original publication: Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G (2014): Apoptotic-like Leishmania exploit the host´s autophagy machinery to reduce T-cell 1 mediated parasite elimination. Autophagy (DOI:10.1080/15548627.2014.998904)

Weitere Informationen: Link to the online abstract of this article Link to the press release of the Paul-Ehrlich-Institut

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>