Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death for life – The Leishmania parasite needs dead competitors to outwit the immune system

24.03.2015

Researchers at the Paul-Ehrlich-Institut have found out how unicellular parasites succeed in tricking our immune system. To be successful, live and dead leishmania parasites must enter the host cells simultaneously. The dead Leishmania are degraded in the cell by means of a self-digestion mechanism (autophagy). This sets off a process that prevents activation of specific immune cells (T cells). A report on the results of this research is available in the online version of Autophagy of 24 March 2015.

The human body has a highly efficient immune system, which recognises bacteria, viruses or parasites that enter the organism as “non-self” and kills them. Leishmania escape this mechanism, thus being able to replicate in the human organism unrecognised by the immune system. The parasites are transmitted by sand flies and cause Leishmaniasis, a disease which above all occurs in tropical regions, the Mediterranean and Asia. However, sand flies are increasingly moving north and have in the meantime also been found in Germany.


Parasitic altruism disables an effective immune response by activating autophagy

Paul-Ehrlich-Institut

Why the immune system is unable to stop the parasites has so far been unclear. The research team of Professor Dr Ger van Zandbergen, head of the Division Immunology at the Paul-Ehrlich-Institut (PEI) and of Peter Crauwels, who is also a member of this Division, found new mechanisms of immune evasion.

Living Leishmania parasites ensure their intracellular survival depending on simultaneous presence of dead Leishmania. In this context, a process called autophagy plays an important part. This process is a digestion mechanism in the human cell which normally serves to provide energy to this cell on a short-term basis in stress situations by degrading cell components. This mechanism can also serve to degrade viruses, bacteria, and foreign proteins.

The PEI researchers have now discovered that Leishmania are digested by the autophagy pathway, which, however, in this case is fatal to the human cell: The defence mechanism of the adaptive immune system against the Leishmania is deactivated. Another peculiarity is that only Leishmania which are already dead can be digested by autophagy thus being able to outwit the immune defence mechanism. If, on the other hand, only live Leishmania enter the cell, this inhibition of the immune system does not take place. In this case, strikingly more specific immune cells of the blood, so-called T cells, are formed which ascertain that the Leishmania are killed.

The researchers have also found out that the ratio of dead to live parasites is roughly 1:1. But where do the dead Leishmania come from? A possible explanation could be that the parasites are transmitted by sand flies which consume food only once a week. Only half the parasites may survive this interval in the stomach of the sand fly before the contents of the stomach with the dead and live parasites is transmitted by the bite of the sand fly.

Another intriguing result of this team’s research is that the specific T cell response against Leishmania was established without exception in blood samples of more than 80 healthy donors who never had any contact with Leishmania. This contradicts the central postulate that adaptive immune response triggering the formation of specific T cells is only set off after prior contact with a certain pathogenic agent. “We have found an existing immune response mechanism against a parasite with which no previous contact took place“, as Professor van Zandbergen summarised the surprising results of the research.

Can the research results be used therapeutically? “Autophagy is not only an interesting immune response mechanism for infections but also for tumours. Active substances are currently developed with which autophagy can be triggered or deactivated. Such medicinal products could also be effective in the case of Leishmaniasis infections” explained Zandbergen.

Original publication: Crauwels P, Bohn R, Thomas M, Gottwalt S, Jäckel F, Krämer S, Bank E, Tenzer S, Walther P, Bastian M, van Zandbergen G (2014): Apoptotic-like Leishmania exploit the host´s autophagy machinery to reduce T-cell 1 mediated parasite elimination. Autophagy (DOI:10.1080/15548627.2014.998904)

Weitere Informationen:

http://www.tandfonline.com/doi/abs/10.1080/15548627.2014.998904?journalCode=kaup... Link to the online abstract of this article
http://www.pei.de/EN/information/journalists-press/press-releases/2015/05-death-... Link to the press release of the Paul-Ehrlich-Institut

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>