Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darwin 2.0

21.11.2014

LSU scientists shed new light on how species diverge

Birds that are related, such as Darwin's finches, but that vary in beak size and behavior specially evolved to their habitat are examples of a process called speciation. It has long been thought that dramatic changes in a landscape like the formation of the Andes Mountain range or the Amazon River is the main driver that initiates species to diverge.


Macaws flying over the rainforest canopy at dawn. The study found that bird lineages that inhabit the forest canopy, such as these macaws, accumulate fewer species over evolutionary time than do bird lineages that inhabit the forest understory.

Credit: Image courtesy of Mike Hankey.

However, a recent study shows that speciation occurred much later than these dramatic geographical changes. Researchers from LSU's Museum of Natural Science have found that time and a species' ability to move play greater parts in the process of speciation. This research was published today in the print edition of Nature.

"The extraordinary diversity of birds in South America is usually attributed to big changes in the landscape over geological time, but our study suggests that prolonged periods of landscape stability are more important," said Robb Brumfield, LSU Museum of Natural Science director and Roy Paul Daniels professor in the Department of Biological Sciences, one of the lead authors.

... more about:
»Amazon »Andes »Andes Mountains »LSU »landscape

Brumfield and his colleagues examined the genealogy of 27 species of birds in the most bio-diverse region in the world, the Neotropics, which extends from southern Mexico through Central America to southern Brazil and includes the Amazon rainforest.

"By using detailed sampling of many bird lineages, we were able to get a clearer and larger picture of when and how species formed within those lineages," Brumfield said.

The genetic data showed multiple accounts of species divergence, from nine to 29 different instances across the Andes Mountains that varied over time. This shows that rather than being the primary cause of speciation, the formation of the Andes Mountains had an indirect effect on diversification as a semi-permeable barrier.

The researchers then investigated how the history and ecology affected speciation among the 27 lineages of birds. They discovered the longer length of time a species can inhabit an area, the more likely it will disperse and diverge. Also, the less mobility a species has, the more likely it will diverge as well.

For example, birds restricted to the forest floor showed significantly higher species diversity than birds that inhabited the forest's open canopy. These findings have conservation ramifications. If a species cannot inhabit the same area for an extended time, it will not have the opportunity to evolve and continue.

"Our results suggest that human alterations of the landscape can effectively kill the speciation process," Brumfield said.

This research was funded by the National Science Foundation. Other institutions involved in this research include the American Museum of Natural History, City College of New York, Museu Paraense Emílio Goeldi in Brazil, Universidad de los Andes in Colombia, Universidad Central de Venezuela, Colección Ornithológica Phelps, University of California Los Angeles and the University of Georgia Athens.

The thousands of samples used in this study represent the culmination of more than 30 years of field expeditions led by generations of LSU students and scientists, plus similar work done by ornithologists at other research institutions.

The mission of the LSU Museum of Natural Science is the acquisition, preservation and study of research collections by museum faculty, staff and students to generate knowledge of regional and global biodiversity, geological history and human history/prehistory for the benefit of the people of Louisiana, the nation and the world. For more information on the museum, visit http://www.museum.lsu.edu/ 

Follow the museum's Twitter, @LSU_MNS. Like the museum's LSU Big Day Peru Facebook for updates as the international award-winning birding team prepares to break the world Big Day record, http://www.facebook.com/LSUBigDay

The mission of the Department of Biological Sciences is to create and disseminate new knowledge in the biological sciences through research; to provide for its majors the highest quality, nationally recognized, graduate and undergraduate educational programs; to provide exceptional science training to support the university's general education requirements; and to contribute expertise in support of science education in the community, including the use of available resources to improve K-12 science outreach. For more information, visit http://www.biology.lsu.edu/ 

Alison Satake | EurekAlert!

Further reports about: Amazon Andes Andes Mountains LSU landscape

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>