Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dartmouth scientists shed light on how our brains see the world


A Dartmouth study reveals how the brain understands motion and still objects to help us navigate our complex visual world.

The findings have a number of potential practical applications, ranging from treatment for motion blindness to improved motion recognition algorithms used in airport and other public security systems.

Zhengang Lu, a doctoral student in Psychological and Brain Sciences at Dartmouth College, and his colleagues have revealed how the brain understands motion and still objects to help us navigate our complex visual world.

Credit: Zhengang Lu

The study appears in the journal Neuroimage. A PDF is available on request.

"By analyzing how terrorists would move in public spaces and incorporating this action signature into pattern recognition algorithm, better accuracy of recognition of terrorist suspects may be achieved than with facial-feature based recognition algorithm," says co-lead author Zhengang Lu, a doctoral student in Psychological and Brain Sciences.

Our brain's visual system consists of a "where" (dorsal) pathway and a "what" (ventral) pathway. A normally function brain can imply motion from still pictures, such as the speed line in cartoons being interpreted as motion streaks of a still object. However, patients with lesions to the dorsal pathway know where objects are but have difficulty recognizing them, while patients with lesions to the ventral pathway have trouble recognizing objects but no problem locating them.

To survive in a dynamic world, the sensitivity of the human visual system for detecting motion cues is a critical evolutionary advantage. For example, people with akinetopsia (the inability to perceive motion) have difficulty crossing the street because they can't gauge oncoming traffic -- they see moving objects as a series of stills, like an object moving under strobe lights. People with object agnosia (the inability to recognize objects) have difficulty navigating everyday life.

The Dartmouth researchers studied neural activity to understand how the brain processes motion in still pictures of animate and inanimate objects. Their findings showed that the brain may process motion differently based on whether it is animate motion or inanimate motion. This suggests the brain not only categorizes objects into animate versus inanimate, but it knows the location of objects based on whether they are animate or inanimate.

"Our findings suggest the brain's two visual pathways interact with each other instead of being separate when processing motion and objects," Lu says. "To fully understand a complex scene when multiple objects moving at different speed, the brain combines the motion signal with the knowledge of how a particular object will move in the world. Our results might not be able to provide treatment directly, but they suggest that treatment for people with motion blindness and object agnosia should consider the functional interaction between these two pathways."


The research was supported by the National Science Foundation.

Available to comment are co-lead authors Zhengang Lu at and Assistant Professor Ming Meng at

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit:

Media Contact

John Cramer


John Cramer | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>