Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth scientists shed light on how our brains see the world

19.11.2015

A Dartmouth study reveals how the brain understands motion and still objects to help us navigate our complex visual world.

The findings have a number of potential practical applications, ranging from treatment for motion blindness to improved motion recognition algorithms used in airport and other public security systems.


Zhengang Lu, a doctoral student in Psychological and Brain Sciences at Dartmouth College, and his colleagues have revealed how the brain understands motion and still objects to help us navigate our complex visual world.

Credit: Zhengang Lu

The study appears in the journal Neuroimage. A PDF is available on request.

"By analyzing how terrorists would move in public spaces and incorporating this action signature into pattern recognition algorithm, better accuracy of recognition of terrorist suspects may be achieved than with facial-feature based recognition algorithm," says co-lead author Zhengang Lu, a doctoral student in Psychological and Brain Sciences.

Our brain's visual system consists of a "where" (dorsal) pathway and a "what" (ventral) pathway. A normally function brain can imply motion from still pictures, such as the speed line in cartoons being interpreted as motion streaks of a still object. However, patients with lesions to the dorsal pathway know where objects are but have difficulty recognizing them, while patients with lesions to the ventral pathway have trouble recognizing objects but no problem locating them.

To survive in a dynamic world, the sensitivity of the human visual system for detecting motion cues is a critical evolutionary advantage. For example, people with akinetopsia (the inability to perceive motion) have difficulty crossing the street because they can't gauge oncoming traffic -- they see moving objects as a series of stills, like an object moving under strobe lights. People with object agnosia (the inability to recognize objects) have difficulty navigating everyday life.

The Dartmouth researchers studied neural activity to understand how the brain processes motion in still pictures of animate and inanimate objects. Their findings showed that the brain may process motion differently based on whether it is animate motion or inanimate motion. This suggests the brain not only categorizes objects into animate versus inanimate, but it knows the location of objects based on whether they are animate or inanimate.

"Our findings suggest the brain's two visual pathways interact with each other instead of being separate when processing motion and objects," Lu says. "To fully understand a complex scene when multiple objects moving at different speed, the brain combines the motion signal with the knowledge of how a particular object will move in the world. Our results might not be able to provide treatment directly, but they suggest that treatment for people with motion blindness and object agnosia should consider the functional interaction between these two pathways."

###

The research was supported by the National Science Foundation.

Available to comment are co-lead authors Zhengang Lu at Zhengang.Lu.GR@dartmouth.edu and Assistant Professor Ming Meng at Ming.Meng@dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>