Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyclotron opens up new prospects for fundamental & applied research in radiopharmaceutical chemistry

13.09.2016

New particle accelerator generating radioactive isotopes for use in nuclear chemistry will be employed to create new medical radiopharmaceuticals

A new particle accelerator is further enhancing the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance.


PETtrace 700S cyclotron with closed radiation shield

photo/©: Stefan F. Sämmer, JGU


The cyclotron with open radiation shield showing a view on the targets (left), the magnets and the cyclotron itself (center), and the vacuum system (right)

photo/©: Stefan F. Sämmer, JGU

The cyclotron was installed in a basement building at the JGU Institute of Nuclear Chemistry in December 2015 and has now been officially put into operation. It will be used to generate isotopes with a short half-life, which are important for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative funded this research facility worth some EUR 1 million.

The JGU cyclotron is a ring-shaped particle accelerator that occupies an approximate floor space of 7.5 square meters and has a height of some two meters. The accelerator weighs about 50 tonnes and when it was installed in December 2015, a crane had to be used to lower it through a hole in the ceiling into the basement room.

Mainz University constructed this new building complex at a cost of around EUR 1.2 million. It is accommodating the cyclotron and includes other facilities containing technical and control equipment plus an air lock. The structure is linked directly to the extension building of the Institute of Nuclear Chemistry and has all safety-relevant features.

As it is able to accelerate protons to an energy of 9.6 mega electron volts (MeV), the cyclotron can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also required for the PET medical diagnostic imaging technique. F-18 and C-11 have short half-lives of just two hours and 20 minutes, respectively, which makes it necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. The launch of the new cyclotron means is it now possible to produce C-11-labelled radiopharmaceuticals on site in Mainz.

"The cyclotron supplements the research infrastructure already in place at Mainz University. Now that we can produce our own radioactive nuclides, we have additional opportunities for our research and development of alternative radiopharmaceuticals," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the generation of new radiopharmaceuticals and their preclinical evaluation as well as—working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center—potential applications in human medicine."

Additional benefits are to be expected through interdisciplinary joint projects in which the disciplines of nuclear chemistry, pharmacy, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals with external institutions, such as the Department of Psychiatry, Psychotherapy and Psychosomatics at RWTH Aachen University and Max Planck Institute for Polymer Research in Mainz.

Photos:
http://www.uni-mainz.de/presse/09_kernchemie_zyklotron1.jpg
PETtrace 700S cyclotron with closed radiation shield
photo/©: Stefan F. Sämmer, JGU

http://www.uni-mainz.de/presse/09_kernchemie_zyklotron2.jpg
The cyclotron with open radiation shield showing a view on the targets (left), the magnets and the cyclotron itself (center), and the vacuum system (right)
photo/©: Stefan F. Sämmer, JGU

Further information:
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692
e-mail: frank.roesch@uni-mainz.de
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/127_ENG_HTML.php

Related links:
http://www.kernchemie.uni-mainz.de/eng/index.php – Institute of Nuclear Chemistry at JGU ;
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/117_ENG_HTML.php – Working group Radiopharmaceutical Chemistry at the JGU Institute of Nuclear Chemistry

Weitere Informationen:

http://www.uni-mainz.de/presse/20010_ENG_HTML.php – press release "Mainz University installs a new particle accelerator to be used for fundamental research into radiopharmaceutical chemistry", 5 January 2016 ;
http://www.uni-mainz.de/presse/19663_ENG_HTML.php – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex", 19 October 2015

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>