Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyclotron opens up new prospects for fundamental & applied research in radiopharmaceutical chemistry

13.09.2016

New particle accelerator generating radioactive isotopes for use in nuclear chemistry will be employed to create new medical radiopharmaceuticals

A new particle accelerator is further enhancing the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance.


PETtrace 700S cyclotron with closed radiation shield

photo/©: Stefan F. Sämmer, JGU


The cyclotron with open radiation shield showing a view on the targets (left), the magnets and the cyclotron itself (center), and the vacuum system (right)

photo/©: Stefan F. Sämmer, JGU

The cyclotron was installed in a basement building at the JGU Institute of Nuclear Chemistry in December 2015 and has now been officially put into operation. It will be used to generate isotopes with a short half-life, which are important for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative funded this research facility worth some EUR 1 million.

The JGU cyclotron is a ring-shaped particle accelerator that occupies an approximate floor space of 7.5 square meters and has a height of some two meters. The accelerator weighs about 50 tonnes and when it was installed in December 2015, a crane had to be used to lower it through a hole in the ceiling into the basement room.

Mainz University constructed this new building complex at a cost of around EUR 1.2 million. It is accommodating the cyclotron and includes other facilities containing technical and control equipment plus an air lock. The structure is linked directly to the extension building of the Institute of Nuclear Chemistry and has all safety-relevant features.

As it is able to accelerate protons to an energy of 9.6 mega electron volts (MeV), the cyclotron can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also required for the PET medical diagnostic imaging technique. F-18 and C-11 have short half-lives of just two hours and 20 minutes, respectively, which makes it necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. The launch of the new cyclotron means is it now possible to produce C-11-labelled radiopharmaceuticals on site in Mainz.

"The cyclotron supplements the research infrastructure already in place at Mainz University. Now that we can produce our own radioactive nuclides, we have additional opportunities for our research and development of alternative radiopharmaceuticals," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the generation of new radiopharmaceuticals and their preclinical evaluation as well as—working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center—potential applications in human medicine."

Additional benefits are to be expected through interdisciplinary joint projects in which the disciplines of nuclear chemistry, pharmacy, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals with external institutions, such as the Department of Psychiatry, Psychotherapy and Psychosomatics at RWTH Aachen University and Max Planck Institute for Polymer Research in Mainz.

Photos:
http://www.uni-mainz.de/presse/09_kernchemie_zyklotron1.jpg
PETtrace 700S cyclotron with closed radiation shield
photo/©: Stefan F. Sämmer, JGU

http://www.uni-mainz.de/presse/09_kernchemie_zyklotron2.jpg
The cyclotron with open radiation shield showing a view on the targets (left), the magnets and the cyclotron itself (center), and the vacuum system (right)
photo/©: Stefan F. Sämmer, JGU

Further information:
Professor Dr. Frank Rösch
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25302
fax +49 6131 39-24692
e-mail: frank.roesch@uni-mainz.de
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/127_ENG_HTML.php

Related links:
http://www.kernchemie.uni-mainz.de/eng/index.php – Institute of Nuclear Chemistry at JGU ;
http://www.kernchemie.uni-mainz.de/radiopharmazie-roesch/117_ENG_HTML.php – Working group Radiopharmaceutical Chemistry at the JGU Institute of Nuclear Chemistry

Weitere Informationen:

http://www.uni-mainz.de/presse/20010_ENG_HTML.php – press release "Mainz University installs a new particle accelerator to be used for fundamental research into radiopharmaceutical chemistry", 5 January 2016 ;
http://www.uni-mainz.de/presse/19663_ENG_HTML.php – press release "German Research Foundation, Rhineland-Palatinate, and Mainz University invest more than EUR 2 million in a cyclotron and its building complex", 19 October 2015

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>