Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cut, File, Shred – A Type of Multi-tool Pocketknife Processes Ribosomal RNA

04.12.2015

Heidelberg biochemists identify tool in ribosome manufacture

Researchers from the Heidelberg University Biochemistry Center (BZH) have discovered a complex of four proteins that, much like a multi-tool pocketknife, serves as a knife, a file and a pair of scissors in the manufacture of ribosomes.

The complex helps eliminate the residual ribonucleic acid (RNA) that are produced during the manufacturing of the ribsome and must be removed to complete the process. The results of the research were published in the journal “Molecular Cell”.

Ribosomes are the cell’s protein factories and must be continuously replenished for cell growth and division. “During biogenesis, the components are assembled, modified and reworked; their position accuracy is checked as well,” explains Prof. Dr. Ed Hurt of the BZH, whose research team discovered the protein complex.

In additional to ribosomal protein components, ribosomes also consist of ribosomal RNA in which ribonucleotides are linked together similar to a chain. Three of the four chains found in the mature ribosome are initially created as a large continuous RNA molecule, from which the three mature RNA chains are excised.

However, there are RNA pieces in between the mature RNA chains that need to be removed to obtain functional ribosomes. “The process is much like the formation of fingers in the embryo. To create a functional hand, the cells that make up the initially present ‘webbing’ between the fingers have to die,” explains Prof. Hurt.

The four-protein complex discovered by the BZH researchers combines multiple functions. Lisa Gasse at Ed Hurt’s laboratory found that a subunit of the enzyme complex first slices into one of the excess areas like a fine knife, a molecular scalpel in a way.

Next, one of the resulting RNA ends is activated so it can be gradually shredded until all the excess RNA is gone. According to the researchers, the complex has a separate protein for each function; shredding even requires two.

“This protein complex is similar to a pocketknife with three tools – a knife for slicing, a file to render the remnant compatible with the shredder, and the shredder itself,” explains Lisa Gasse.

The discovery by the Heidelberg researchers could shed new light on the origin and causes of a rare motor neuron disease that causes fatal respiratory failure in newborns, wherein a mutation in the protein complex was identified, specifically in the subunit with the scalpel function. This subunit was the focus of the Heidelberg team’s investigations.

Original publication:
L. Gasse, D. Flemming, E. Hurt: Coordinated Ribosomal ITS2 rRNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Molecular Cell (3 December 2015), doi: 10.1016/j.molcel.2015.10.021

Contact:
Prof. Dr. Ed Hurt
Heidelberg University Biochemistry Center
Phone +49 6221 54-4173
ed.hurt@bzh.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.uni-heidelberg.de/zentral/bzh/hurt/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>