Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cut, File, Shred – A Type of Multi-tool Pocketknife Processes Ribosomal RNA

04.12.2015

Heidelberg biochemists identify tool in ribosome manufacture

Researchers from the Heidelberg University Biochemistry Center (BZH) have discovered a complex of four proteins that, much like a multi-tool pocketknife, serves as a knife, a file and a pair of scissors in the manufacture of ribosomes.

The complex helps eliminate the residual ribonucleic acid (RNA) that are produced during the manufacturing of the ribsome and must be removed to complete the process. The results of the research were published in the journal “Molecular Cell”.

Ribosomes are the cell’s protein factories and must be continuously replenished for cell growth and division. “During biogenesis, the components are assembled, modified and reworked; their position accuracy is checked as well,” explains Prof. Dr. Ed Hurt of the BZH, whose research team discovered the protein complex.

In additional to ribosomal protein components, ribosomes also consist of ribosomal RNA in which ribonucleotides are linked together similar to a chain. Three of the four chains found in the mature ribosome are initially created as a large continuous RNA molecule, from which the three mature RNA chains are excised.

However, there are RNA pieces in between the mature RNA chains that need to be removed to obtain functional ribosomes. “The process is much like the formation of fingers in the embryo. To create a functional hand, the cells that make up the initially present ‘webbing’ between the fingers have to die,” explains Prof. Hurt.

The four-protein complex discovered by the BZH researchers combines multiple functions. Lisa Gasse at Ed Hurt’s laboratory found that a subunit of the enzyme complex first slices into one of the excess areas like a fine knife, a molecular scalpel in a way.

Next, one of the resulting RNA ends is activated so it can be gradually shredded until all the excess RNA is gone. According to the researchers, the complex has a separate protein for each function; shredding even requires two.

“This protein complex is similar to a pocketknife with three tools – a knife for slicing, a file to render the remnant compatible with the shredder, and the shredder itself,” explains Lisa Gasse.

The discovery by the Heidelberg researchers could shed new light on the origin and causes of a rare motor neuron disease that causes fatal respiratory failure in newborns, wherein a mutation in the protein complex was identified, specifically in the subunit with the scalpel function. This subunit was the focus of the Heidelberg team’s investigations.

Original publication:
L. Gasse, D. Flemming, E. Hurt: Coordinated Ribosomal ITS2 rRNA Processing by the Las1 Complex Integrating Endonuclease, Polynucleotide Kinase, and Exonuclease Activities. Molecular Cell (3 December 2015), doi: 10.1016/j.molcel.2015.10.021

Contact:
Prof. Dr. Ed Hurt
Heidelberg University Biochemistry Center
Phone +49 6221 54-4173
ed.hurt@bzh.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.uni-heidelberg.de/zentral/bzh/hurt/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>