Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryo-EM reveals 'crown-like' structure of protein responsible for regulating blood flow

07.12.2017

A team led by scientists at Van Andel Research Institute (VARI) has revealed for the first time the atomic-level structure of a promising drug target for conditions such as stroke and traumatic brain injury.

Called TRPM4, this protein is found in tissues throughout the body, including the brain, heart, kidney, colon and intestines, where it plays a major role in regulating blood flow via blood vessel constriction as well as setting the heart's rhythm and moderating immune responses.


Human TRPM4 bound with the agonist Ca+ and modulator DVT at 3.8 Å.

Courtesy of Wei Lü, Ph.D.

Usage Restrictions: Use only in relation to this news release. Always credit Wei Lü, Ph.D.

"Understanding the role TRPM4 plays in regulating circulation is vital, but for years research has been limited by a lack of insight about its molecular architecture," said Wei Lü, Ph.D., an assistant professor at VARI and lead author on a study describing TRPM4's structure, published today in Nature. "Our findings not only provide a detailed, atomic-level map of this critical protein, but also reveal completely unexpected facets of its makeup."

TRPM4 is critically involved in regulating the blood supply to the brain, which comprises only about 2 percent of the body's total weight yet receives 15 to 20 percent of its blood supply. Conditions that disrupt blood flow in the brain, such as stroke, traumatic brain injury, cerebral edema and hypertension, can have devastating consequences and are significant public health problems.

"Many safeguards exist in the brain's circulatory system to protect against a sudden interruption in blood supply, one of which is TRPM4," Lü said. "We hope that a better understanding of what this protein looks like will give scientists a molecular blueprint on which to base the design of more effective medications with fewer side effects."

The structure of TRPM4 is markedly different from the other molecules in the TRP superfamily, a category of proteins that mediate responses to sensations and sensory stimuli, such as pain, pressure, vision, temperature and taste. Broadly known as ion channels, proteins like TRP nestle within cells' membranes, acting as gatekeepers for chemical signals passing into and out of the cell.

Even within its own subfamily, which comprises eight molecules in total, TRPM4 appears to be wholly unique. Today's publication represents the first atomic view of a member of the TRPM subfamily.

It reveals a crown-like structure, with the four peaks composing a large N-terminal domain--a hallmark of TRPM proteins. This region, found at the start of the molecule, is a major site of interaction with the cellular environment and other molecules in the body. On the opposite end of TRPM4, commonly called the C-terminal domain, Lü's team found an umbrella-like structure supported by a "pole" and four helical "ribs"--characteristics that have never before been observed.

The findings were made possible by VARI's state-of-the-art David Van Andel Advanced Cryo-Electron Microscopy Suite, which allows scientists to view some of life's smallest components in exquisite detail. VARI's largest microscope, the Titan Krios, is one of fewer than 120 in the world and is so powerful that it can visualize molecules 1/10,000th the width of a human hair.

Lü's structure is the second molecular structure determined on the Institute's Krios since completion of the suite's installation earlier this year.

###

In addition to Lü, VARI Assistant Professor Juan Du, Ph.D., also is an author on today's paper. Paige A. Winkler, Ph.D., and Yihe Huang, Ph.D., both postdoctoral fellows in Lü's lab, and Weinan Sun, Ph.D., a postdoctoral associate in the Spruston Lab at Howard Hughes Medical Institute Janelia Research Campus, are co-first authors.

ABOUT VAN ANDEL RESEARCH INSTITUTE

Van Andel Institute (VAI) is an independent nonprofit biomedical research and science education organization committed to improving the health and enhancing the lives of current and future generations. Established by Jay and Betty Van Andel in 1996 in Grand Rapids, Michigan, VAI has grown into a premier research and educational institution that supports the work of more than 360 scientists, educators and staff. Van Andel Research Institute (VARI), VAI's research division, is dedicated to determining the epigenetic, genetic, molecular and cellular origins of cancer, Parkinson's and other diseases and translating those findings into effective therapies. The Institute's scientists work in onsite laboratories and participate in collaborative partnerships that span the globe. Learn more about Van Andel Institute or donate by visiting http://www.vai.org. 100% To Research, Discovery & Hope®

Media Contact

Beth Hinshaw Hall
beth.hinshawhall@vai.org
616-234-5519

http://www.vai.org 

Beth Hinshaw Hall | EurekAlert!

More articles from Life Sciences:

nachricht Detection of bacterial biofilms using covalent lectin binders
07.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht New project to investigate the role of novel protein in cancer metastasis
07.12.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

 
Latest News

A 100-fold leap to GigaDalton DNA nanotech

07.12.2017 | Information Technology

Cryo-EM reveals 'crown-like' structure of protein responsible for regulating blood flow

07.12.2017 | Life Sciences

New project to investigate the role of novel protein in cancer metastasis

07.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>