Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crown gall disease: a tumour home to a varied bacterial community


At present, an early diagnosis of the tumour-like crown gall disease affecting grapevines seems out of reach. Two researchers have taken a closer look at the tumours and found a very special environment.

Wine growers and nurseries would benefit from detecting the dangerous crown gall disease in their vines before it breaks out. Such an early diagnosis is not available at present and cannot be expected soon.

Visible to the untrained eye upon closer inspection only: a crown gall tumour on a vine.

(Picture: Hanna Faist)

This conclusion is drawn by Dr. Rosalia Deeken from the Biocenter of the Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, and Professor Ute Hentschel-Humeida who worked here before relocating to Kiel. The scientists are convinced that the currently available methods are incapable of diagnosing crown gall disease reliably at an early stage.

Obstacles to a reliable early diagnosis

One reason: Infected by a handful of pathogens, the plant sap distributes the bacteria throughout the plant. So where to take a sample to assure an early diagnosis with a 100% reliable result? "In principle, one would have to sacrifice the whole plant for this purpose," says Deeken.

Another reason: Different variations of the highly sensitive polymerase chain reaction (PCR) that would theoretically be suitable to identify the bacteria are inappropriate because the pathogens are much too different genetically. The researchers made this discovery together with Dr. Alexander Keller of the JMU’s Biocenter, a bacteria specialist and expert in computation biology, using samples from five different sites in Lower Franconia.

Disease reduces yield

Crown gall disease is triggered by the bacterium Agrobacterium vitis which causes tumour-like growths or galls at the vines. The yield decreases as a result and the vines die in the worst case. So far, no treatment for crown gall disease has been known.

"Therefore, nurseries and wine growers are extremely careful to produce and use only vines that are free from agrobacteria," Deeken further. This goal, however, is difficult to reach as the agrobacteria are capable of living hidden in the plant for several years before the disease breaks out. And without a method of early diagnosis, infected plants cannot be singled out in time.

Microbial community in tumour studied

The JMU biologists and doctoral student Hanna Faist also looked into the fundamentals of the vine disease. "We know from experience with humans that certain bacteria are capable of promoting the genesis and destruction of tumours," Deeken explains. The team therefore focused on the microbial community living in the grown gall tumours.

The doctoral student analysed the bacterial colonization of diseased and healthy vines during one growth period and compared the results. Keller's established method of high-throughput amplicon sequencing was employed for this purpose; the vines under examination were provided by the Bavarian State Institute for Viticulture and Horticulture in Veitshöchheim nearby Würzburg.

The results have been published in the journal of the American Society for Microbiology (Applied and Environmental Microbiology). They demonstrate that the microbial composition especially in the tumour tissue remains relatively stable throughout the seasons. However, the variety of bacteria in crown gall tumours is greater than in healthy vines.

Some bacteria inhibit tumour growth

In addition to the bacteria found in the healthy tissue, there are others that are exclusively detected in the gall tissue. These include types that migrate into the tumour as "opportunists", because it provides protection and nutrients. Others in contrast inhibit tumour growth.

The pathogen itself, however, does not need either the one or the other bacteria to generate the tumour. The scientists proved this on vines that had been cultivated sterilely on agar growth media provided by the nursery Rebschule Steinmann from Sommerhausen. An infection of the sterile vines with only Agrobacterium vitis was sufficient to trigger gall growth.

Deeken's conclusion:

"Our study backs the assumption that crown gall tumours accommodate a very special bacterial community. On the one hand, the bacteria benefit from the tumour environment, and on the other hand, they keep the disease in check to a certain degree: "The tumour does not grow so large that most infected vines would die." Further investigations are aimed at studying the interactions between the different bacteria in the tumour.

“Crown galls of grapevine (Vitis vinifera) host distinct microbiota”, Faist H, Keller A, Hentschel U, Deeken R (2016), Applied and Environmental Microbiology Vol 82, Issue 18, DOI: 10.1128/AEM.01131-16

Project sponsors

The study received financial support from Deutsche Forschungsgemeinschaft (GK1342: A5 – Deeken, A8 – Hentschel/Riederer) and Universitätsbund Würzburg within the scope of the university sponsorship award of the Main-Franconian industry.


Dr. Rosalia Deeken, Department of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, Phone +49 931 31-89203,

Weitere Informationen: To Rosalia Deeken's home page

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>