Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crouching protein, hidden enzyme

26.01.2016

TSRI and UC Berkeley team solves structure of 'flipping' cellular machine, pointing to possible Alzheimer's and Parkinson's therapies

Meet a microscopic gymnast.


New research from The Scripps Research Institute and UC Berkeley shows the workings of a crucial molecular enzyme. In this image, the green glow in the structure indicates the location of the Rpn11 enzymatic active site in its inhibited conformation at the heart of the isolated lid complex.

Credit: Lander lab, The Scripps Research Institute

A new study led by scientists at The Scripps Research Institute (TSRI) and the University of California (UC), Berkeley shows how a crucial molecular enzyme starts in a tucked-in somersault position and flips out when it encounters the right target.

The new findings, published recently in the journal eLife, give scientists a clearer picture of the process through which cells eliminate proteins that promote diseases such as cancer and Alzheimer's.

... more about:
»TSRI »cryo-EM »enzyme »proteasome »proteins

"Having an atomic-resolution structure and a better understanding of this mechanism gives us the ability to someday design therapeutics to combat cancer and neurodegeneration," said TSRI biologist Gabriel Lander, who was co-senior of author of the study with Andreas Martin of UC Berkeley.

Keeping Cells Healthy

The new study sheds light on the proteasome, a molecular machine that serves as a recycling center in cells. Proteasomes break down spent or damaged proteins and can even eliminate harmful misfolded proteins observed in many diseases.

The new research is the first study in almost 20 years to solve a large component of the proteasome at near-atomic resolution. Lander said the breakthrough was possible with recent advances in cryo-electron microscopy (EM), an imaging technique in which a sample is bombarded with an electron beam, producing hundreds of thousands of protein images that can be consolidated into a high-resolution structure.

Using cryo-EM, scientists investigated part of the proteasome that contains a deubiquitinase enzyme called Rpn11. Rpn11 performs a crucial function called deubiquitination, during which it cleaves molecular tags from proteins scheduled for recycling in the proteasome. This is a key step in proteasomal processing--without Rpn11, the protein tags would clog the proteasome and the cell would die.

From previous studies, scientists knew Rpn11 and its surrounding proteins latch onto the proteasome to form a sort of lid. "The lid complex wraps around the proteasome like a face-hugger in the movie 'Alien,'" said Lander.

The lid complex can also exist separately from the proteasome--which poses a potential problem. If Rpn11 cleaves tags from proteins that haven't gotten to the proteasome yet, those proteins could skip the recycling stage and cause disease. Scientists had wondered how nature had solved this problem.

A Guide for Future Therapies

The study provides an answer, showing the lid complex as it floats freely in cells. In this conformation, Rpn11 is carefully nestled in the crook of surrounding proteins, stabilized and inactive.

"There's a sophisticated network of interactions that pin the Rpn11 deubiquitinase against neighboring subunits to keep it inhibited in the isolated proteasome lid," explained Corey M. Dambacher, a researcher at TSRI at the time of the study and now a senior scientist at Omniome, Inc., who was first author of the study with TSRI Research Associate Mark Herzik Jr. and Evan J. Worden of UC Berkeley.

"In order for Rpn11 to perform its job, it has to flip out of this inhibited conformation," said Herzik.

The new study also shows that, to flip out of the conformation at the proteasome, the proteins surrounding deubiquitinase pivot and rotate--binding to the proteasome and releasing the deubiquitinase active site from its nook.

Lander called the system "finely tuned," but said there may be ways to manipulate it. The study collaborators at UC Berkeley made small mutations to the proteins holding Rpn11 in position, and found that any small change will release the deubiquitinase, even when the lid is floating freely.

Lander said the new understanding of the mechanism that activates Rpn11 could guide future therapies that remove damaged or misfolded proteins.

"Accumulation of these toxic proteins can lead to diseases such as Parkinson's and Alzheimer's, as well as a variety of cancers," Lander said. "If we can harness the proteasome's ability to remove specific proteins from the cell, this gives us incredible power over cellular function and improves our ability to target certain cells for destruction."

Going forward, the researchers hope to use the same cryo-EM techniques to investigate other components of the proteasome--and figure out exactly how it recognizes and destroys proteins. "There's still a lot to learn," said Lander.

###

For more information on the study, "Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition," see http://elifesciences.org/content/early/2016/01/08/eLife.13027

This research was supported by the Damon Runyon Cancer Research Foundation (grant DFS-#07-13), the Pew Scholars program, the National Institutes of Health (grants DP2 EB020402 and R01-GM094497), the Searle Scholars Program, the National Science Foundation CAREER Program (grant NSF-MCB-1150288), the Howard Hughes Medical Institute and a National Science Foundation Graduate Research Fellowship.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists--including two Nobel laureates--work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
madms@scripps.edu
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Madeline McCurry-Schmidt | EurekAlert!

Further reports about: TSRI cryo-EM enzyme proteasome proteins

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>