Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017

Natural defense mechanism simulated with the help of nanoparticles / Noxious effects of smoke reduced

Chemists at Johannes Gutenberg University Mainz (JGU) have developed a technique that reduces the toxic effects of commercially available cigarettes. In spite of the fact that the World Health Organization (WHO) estimates that some 6 million people die every year as a consequence of tobacco consumption, the number of smokers around the world is on the rise.


From laboratory to everyday life: Artificially produced copper hydroxide nanoparticles catalyze the decomposition of oxygen radicals by imitating a natural enzyme-induced catalytic defense mechanism. The integration of such nanoparticles in commercial cigarette filters can result in a reduction of the toxicity of cigarette smoke.

Ill./©: Karsten Korschelt, AG Tremel, JGU

The number of tobacco-related deaths is equivalent to the fatality rate that would occur if a passenger plane were to crash every hour. According to figures published by the German Federal Statistical Office, the tobacco industry generated a turnover of around EUR 20.5 billion in 2016 through the sale of cigarettes in Germany alone.

Tobacco smoke contains almost 12,000 different constituents. Among these are narcotoxic substances such as nicotine, blood toxins like cyanide and carbon monoxide, not to mention the various carcinogens. Among these are free oxygen radicals, also known as reactive oxygen species. More than 10 quadrillion (10^16) of these molecules are inhaled with every puff on a cigarette.

The Mainz-based team headed by Professor Wolfgang Tremel has discovered how to significantly lower the levels of these free oxygen radicals and thus markedly reduce the toxicity of cigarette smoke. This development could help not only to make the consumption of tobacco-based products somewhat less hazardous but it could also be extended to other areas in which reactive oxygen radicals are a problem.

Researchers took the underlying idea behind the concept from natural enzymes. In the presence of an enhanced concentration of reactive oxygen species as a result of, for instance, enzymatic dysfunction, UV radiation or the inhalation of tobacco smoke, uncontrolled cell division and oxidative cell damage can occur.

Nature regulates the concentration of radicals by means of antioxidant enzymes such as superoxide dismutase (SOD), which plays a central role in the prevention of pathological processes, including tumor and cancer growth, inflammatory diseases, and stroke. The naturally occurring enzyme utilizes metals such as copper-zinc, nickel, iron, and manganese as reactive centers that cause oxygen radicals to decompose so that the organism is protected from their aggressive reactive behavior.

Today it is possible to produce or isolate enzymes like SOD, but the process is accompanied by high costs. However, their poor stability on exposure to high temperatures and non-physiological pH values complicates matters. With natural enzymes in mind, researchers in the field of biomimetics are seeking ways to imitate natural biological reactions with the help of synthetic compounds.

Chemist Karsten Korschelt and food chemist Dr. Carmen Metzger investigated amino acid-functionalized copper hydroxide nanoparticles as potential synthetic analogues of cupriferous SOD. They found that the particles were associated with a higher rate of catalytic activity in terms of the decomposition of oxygen radicals than the enzyme itself. "This is in principle not such a surprise as all copper atoms on the particle surface can have a catalytic effect, yet the enzyme has only one active center," said Professor Wolfgang Tremel. In contrast to natural enzymes, functionalized copper hydroxide nanoparticles are very stable and inexpensive to produce.

From laboratory to everyday life

Although natural enzymatic reactions can be mimicked with the help of nanoparticles, there are as yet only a few applications based on the principle. Nanoparticles themselves are used in cosmetics, for instance, and as nano sealants in paints and textiles. We are so extensively exposed to free radicals on a day-to-day basis that their presence is frequently ignored altogether.

But in exhaust fumes and cigarette smoke they represent a major threat to health. The team of chemists in Mainz is thus collaborating with the group headed by Professor Jürgen Brieger of the Mainz University Medical Center in order to determine whether it is possible to integrate functionalized copper hydroxide nanoparticles in cigarette filters and thus reduce levels of free radicals in smoke, hence providing smokers with greater protection against their toxic potential.

Cytotoxicity tests have shown that the cigarette smoke extracts in the examined concentrations no longer have a toxic effect on human cells after passing through cigarette filters containing nanoparticles, while there was increased toxicity in the case of controls in which untreated filters were employed.

"This demonstrates the positive effect of the particles when used in cigarette filters and their stability during the smoking process," emphasized Karsten Korschelt. The researchers in Mainz have thus been able to demonstrate that imitating natural defense mechanisms with the help of nanoparticles is possible and that a reduction in the toxic effects of various types of smoke can be achieved.

The employed methods and analyses were developed and implemented in cooperation with the University Medical Center of Johannes Gutenberg University Mainz. The report on their work has been published in the scientific journal Nanoscale.

Original publication:
Karsten Korschelt et al.
Glycine-Functionalized Copper(II) Hydroxide Nanoparticles with High Intrinsic Superoxide Dismutase Activity
Nanoscale, 22 February 2017
DOI: 10.1039/C6NR09810J

Caption:
http://www.uni-mainz.de/bilder_presse/09_anorgchemie_artificial_copper_hydroxide...
From laboratory to everyday life: Artificially produced copper hydroxide nanoparticles catalyze the decomposition of oxygen radicals by imitating a natural enzyme-induced catalytic defense mechanism. The integration of such nanoparticles in commercial cigarette filters can result in a reduction of the toxicity of cigarette smoke.
Ill./©: Karsten Korschelt, AG Tremel, JGU

Contact and further information:
Professor Dr. Wolfgang Tremel
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25135
fax +49 6131 39-25605
e-mail: tremel@uni-mainz.de
http://www.ak-tremel.chemie.uni-mainz.de/index.php

Weitere Informationen:

http://pubs.rsc.org/en/content/articlelanding/2017/nr/c6nr09810j#!divAbstract – Article in Nanoscale ;
https://www.chemistryworld.com/news/nanoparticles-mimic-enzyme-to-reduce-toxins-... – Article in Chemistry World

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>