Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COPD – changes in the lungs, changes in the microbiome

17.07.2017

Chronic obstructive pulmonary disease (COPD) can result in structural changes within the lungs over time. Scientists at the Helmholtz Zentrum München have now been able to show that these changes not only affect the organ itself, but also the bacteria that live in the lung. The results have been published in ‘PLOS ONE’.

Coughing, breathing difficulties, and strong mucous production in the lungs are typical symptoms of COPD. The disease is often triggered by smoking, and, according to estimates from the World Health Organization (WHO), it could become the world’s third most common cause of death in 2030.


Infographics summarizing Engel et al.

Source: Helmholtz Zentrum München / Marion Engel

“COPD has various subtypes that, for example, can be verified by use of quantitative computer tomography (qCT)*,” explains PD Dr. Wolfgang zu Castell, head of the Research Unit Scientific Computing (ASC) at the Helmholtz Zentrum München. “We wanted to investigate if the microbiome in the lungs changes in a way that depends on these subtypes,” adds Prof. Dr. Michael Schloter, head of the Research Unit for Comparative Microbiome Analyses (COMI) at the Helmholtz Zentrum München.

Microbiome and CT scans analyzed

For this purpose, scientists from the two research units examined samples gathered from nine healthy individuals and 16 COPD patients. They were all participants of a Europe-wide population study (EvA Consortium; Emphysema versus Airways Disease). On the one hand, CT scans were used to analyze the lungs and assign the patients to the respective COPD subtypes. On the other hand, the scientists used brush samples from lungs to determine the composition of the lung microbiome using certain marker genes.

“This allowed us to show that the composition of the bacterial community in the lungs of COPD patients without structural changes is very similar to that of healthy subjects,” explains Dr. Marion Engel, scientist in the Complex Systems Research Group in the ASC and the study’s first author. “On the other hand, the bacterial composition in the lungs of ill subjects with structural changes differ significantly from those of the other two groups, regardless of the severity of the disease.”

Streptococci suspected

According to the study, Streptococci are often found in structurally altered lungs. This genus includes many pathogenic representatives that are also often detected in the presence of exacerbations**. In the lungs of healthy subjects, on the other hand, there was an increased presence of the genus Prevotella, to which a number of probiotic characteristics have also been attributed.

Taken together, these findings indicate that for certain subtypes of COPD, changes occur in the bacterial communities in the lungs that can promote an increase of potentially pathogenic bacteria. With regards to personalized medicine, it would therefore be expedient also to keep an eye on the microbiome, for instance when considering whether or not antibiotics or glucocorticoids should be administered in the event of a particular COPD subtype.

Further Information

* Unlike conventional computer tomography (CT), quantitative (q) methods analyze the physical density with great precision.
** Exacerbations denote a (mostly non-linear) progression of the symptoms

Background:
The presence of bacteria in the lungs is absolutely normal. It was also previously known that the composition of the bacterial communities in the lungs are changed in people with progressive COPD and that pathogenic bacteria and viruses can exacerbate the state of health, according to the authors. What is primarily new here is that structural changes in COPD patient lungs that can be detected with CT are associated with the composition of the lung microbiome, but not with the severity of the disease.

Original Publication:
Engel, M. et al. (2017): Influence of Lung CT Changes in Chronic Obstructive Pulmonary Disease (COPD) on the Human Lung Microbiome. PLOS ONE, DOI: 10.1371/journal.pone.0180859

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Scientific Computing Research Unit (ASC) is a part of the Institute of Computational Biology (ICB). The research unit combines the organization of the central data center of the Helmholtz Zentrum München with research components in scientific computing. Therefore the mission of the research unit is twofold: First, to provide professional ICT services for all organizational units of the Helmholtz Zentrum München. Second, to develop and apply mathematical methods for computational analysis and simulation of biological systems. http://www.helmholtz-muenchen.de/asc

The Research Unit for Comparative Microbiome Analyses (COMI) strives to elucidate elementary modes of action in microbiome development and the associated formation of networks which occur independently from any particular environment and can thus be considered as general principles of microbe – microbe interactions. A major issue will be to improve our understanding on the role of microbial networks for stability and resilience towards stressors or changing environmental conditions. This focus of research will not only unravel microbial functions in different environments, where microbes play an essential role, but it will also improve our in-depth understanding of microbiome interactions from different environments. Further results will allow the development of tools to restore microbiomes and thus improving the health of the hosts (contributing to the “red” and the “green” research fields of HMGU. http://www.helmholtz-muenchen.de/comi

Contact for the media:
Communication Department, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Marion Engel, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit Scientific Computing, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany - Tel. +49 89 3187 1226 - E-mail: marion.engel@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releases/index.html - Read more news of Helmholtz Zentrum München

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: COPD CT Environmental Health Microbiome lung lungs structural changes

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>