Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperating bacteria isolate cheaters

08.12.2015

Bacteria, which reciprocally exchange amino acids, stabilize their partnership on two-dimensional surfaces and limit the access of non-cooperating bacteria to the exchanged nutrients. Scientists at the Max Planck Institute for Chemical Ecology and the Friedrich Schiller University in Jena have shown that bacteria, which do not actively contribute to metabolite production, can be excluded from the cooperative benefits. The research team demonstrated that cooperative cross-feeding interactions that grow on two-dimensional surfaces are protected from being exploited by opportunistic, non-cooperating bacteria. (The ISME Journal, December 2015)

In natural microbial communities, different bacterial species often exchange nutrients by releasing amino acids and vitamins into their growth environment, thus feeding other bacterial cells. Even though the released nutrients are energetically costly to produce, bacteria benefit from nutrients their bacterial partners provide in return.


Amino acid measurements: Concentrations are high in the vicinity of cooperative bacteria (above). In contrast, no amino acids were detectable in areas surrounding non-cooperative bacteria (below).

S. Pande, F. Kaftan / Max Planck Institute for Chemical Ecology, S. Lang / Friedrich Schiller University Jena


Experiment (left) and computer simulation (right): Cooperative bacteria are shown in red, non-cooperative bacteria are green. Opportunistic bacteria only exist on the fringe of cooperating colonies.

S. Pande / Max Planck Institute for Chemical Ecology, S. Lang / Friedrich Schiller University Jena

Hence, this process is a cooperative exchange of metabolites. Scientists at the Max Planck Institute for Chemical Ecology and the Friedrich Schiller University in Jena have shown that bacteria, which do not actively contribute to metabolite production, can be excluded from the cooperative benefits. The research team demonstrated that cooperative cross-feeding interactions that grow on two-dimensional surfaces are protected from being exploited by opportunistic, non-cooperating bacteria.

Under these conditions, non-cooperating bacteria are spatially excluded from the exchanged amino acids. This protective effect probably stabilizes cooperative cross-feeding interactions in the long-run. (The ISME Journal, December 2015)

The Research Group “Experimental Ecology and Evolution” headed by Dr. Christian Kost is investigating how cooperative interactions between organisms have evolved. In this context, the scientists study a special type of division of labor that is very common in nature, namely the reciprocal exchange of nutrients among unicellular bacteria. For these tiny organisms it is often advantageous to divide the labor of certain metabolic processes rather than performing all biochemical functions autonomously. Bacteria that engage in this cooperative exchange of nutrients can save a significant amount of energy.

Indeed, in a previous study, the researchers could already demonstrate that this division-of-metabolic-labor can positively affect bacterial growth. In the new study, they addressed the question how such cooperative interactions can persist if non-cooperating bacteria consume amino acids without providing nutrients in return. The evolutionary disadvantage that results for cooperative cells could lead to a collapse of the cross-feeding interaction.

To experimentally verify this possibility, the scientists have monitored co-cultures of cooperating and non-cooperating bacteria. For this, they genetically engineered “cooperators” of two bacterial species that released increased amounts of certain amino acids into their environment. “As a matter of fact, non-cooperators grew better than cooperators in a well-mixed liquid medium, because under these conditions, they had an unrestricted access to the amino acids in the medium. Their growth, however, was considerably reduced when placed on a two-dimensional surface,” said Kost, summarizing the results of the experiments. A more detailed analysis revealed that non-cooperating bacteria could only exist at the very fringe of colonies consisting of cooperating bacteria.

For their study the scientists combined different methods and techniques. The basis formed a new research approach called “synthetic ecology”, in which certain mutations are rationally introduced into bacterial genomes. The resulting bacterial mutants are then co-cultured and their ecological interactions analyzed. In parallel, colleagues at the Friedrich Schiller University from the Department of Bioinformatics developed computer models to simulate these interactions. Finally, chemical analyses using mass spectrometric imaging was instrumental for visualizing the bacterial metabolites. Only the combination of microbiological methods with chemical-analytic approaches and computer simulations enabled the scientists to understand and elucidate this phenomenon.

“The fact that such a simple principle can effectively stabilize such a complex interaction suggests that similar phenomena may play important roles in natural bacterial communities,” Christian Kost states. After all, bacteria occur predominantly in so-called biofilms – these are surface-attached slime layers that consist of many bacterial species. Known examples include bacteria causing dental plaque or bacterial communities that are used in wastewater treatment plants. Moreover, biofilms are highly relevant for medical research: They do not only play important roles for many infectious diseases by protecting bacterial pathogens from antibiotics or the patients’ immune responses, but are also highly problematic when colonizing and spreading on the surfaces of medical implants.

This new study has elucidated that cooperating bacteria form cell clusters and in this way exclude non-cooperating bacteria from their community. “The importance of this mechanism is due to the fact that no complicated or newly-evolved condition, such as the recognition of potential cooperation partners, needs to be fulfilled to effectively stabilize this long-term partnership. Two cooperating bacterial strains and a two-dimensional surface are sufficient for this protective effect to occur”, explains Kost.

The study raises many new exciting questions the researchers plan to address in the future. For example, they are interested in whether or not similar synergistic effects occur when more than two bacterial partners are involved. In their natural habitats, it is likely that more than two bacterial species participate in such cooperative interactions, leading to rather complex interaction networks. Moreover, amino acid-producing bacterial mutants were synthetically generated for this study. Whether also naturally evolved “cooperators” that occur in a habitat like soil show similar dynamics, remains to be verified. Given that bacteria frequently occur in biofilms, cooperative cross-feeding is probably much more widespread than previously thought. Understanding the factors and mechanisms that promote or inhibit bacterial growth could thus provide important clues on how to fight harmful bacteria or to better use beneficial ones. [CK/AO]

Original Publication:
Pande, S., Kaftan, F., Lang, S., Svatoš, A., Germerodt, S., Kost, C. (2015). Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. The ISME Journal. DOI:10.1038/ismej.2015.212
http://dx.doi.org/10.1038/ismej.2015.212

Further Information:
Dr. Christian Kost, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Tel. +49 3641 57-1212, E-Mail ckost@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1051.html?&L=0 (Division of Labor in the Test Tube, Press Release, December 2, 2013)
http://www.ice.mpg.de/ext/experimental-evolution.html (Research Group Experimental Ecology and Evolution)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>