Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controllable protein gates deliver on-demand permeability in artificial nanovesicles

09.10.2015

Researchers at the University of Basel have succeeded in building protein gates for artificial nano-vesicles that become transparent only under specific conditions. The gate responds to certain pH values, triggering a reaction and releasing active agents at the desired location. This is demonstrated in a study published in the journal Nano Letters.

Tiny nanovesicles can protect active agents until they arrive in specific environments, such as at the target site in the body. In order to trigger a chemical reaction and release the contents at that location, the outer casing of the synthetically produced vesicles must become permeable at the correct point in time.


Nanocompartment with closed protein gates (red).

University of Basel

Working under Prof. Cornelia Palivan, researchers from the Swiss Nanoscience Institute have now developed a membrane gate that opens on demand. This means that the enzymes inside a nanocapsule become active under exactly the right conditions and act on the diseased tissue directly.

Reacting to changes in pH

The gate is made up of the chemically modified membrane protein OmpF, which responds to certain pH values. At neutral pH in the human body, the membrane is impermeable – but if it encounters a region with acidic pH, the protein gate opens and substances from the surrounding area can enter the nanocapsule.

In the resulting enzymatic reaction, the capsule’s contents act on the incoming substrate and the product of this reaction is released. This method could be applied, for example, to inflamed or cancerous tissue, which often exhibits a slightly acidic pH value.

Until now, permeability in nanovesicles has been achieved using natural proteins that operate as pores in the protective membrane, allowing both the substrate to enter and the product of the enzymatic reaction to escape.

However, fields such as medicine or controlled catalysis call for more precise distribution in order to achieve the greatest possible efficiency of the active agent. In collaboration with Prof. Wolfgang Meier’s team, the chemists working under Prof. Palivan were able for the first time to integrate a modified membrane protein into an artificially produced nanocapsule, which opened only if it encountered corresponding pH values.

The experiments performed at the university are part of the National Center of Competence in Research Molecular Systems Engineering (NCCR MSE), and the Swiss Nanoscience Institute (SNI).

Originalbeitrag
T. Einfalt, R. Goers, I.A. Dinu, A. Najer, M. Spulber, O. Onaca-Fischer, C. G. Palivan
Stimuli-triggered activity of nanoreactors by biomimetic engineering polymer membranes
Nano Letters ¦ doi: 10.1021/acs.nanolett.5b03386

Further information
Tomaz Einfalt, University of Basel, Department of Chemistry, Swiss Nanoscience Institute, tel. +41 61 26 7 38 37 email: tomaz.einfalt@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Steuerbare-Proteinschleus...

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>