Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constructing complex molecules with atomic precision

02.06.2015

Researchers in Russia have developed a waste-free and cost-effective approach for preparing complex organic molecules and revealing the physical nature of the processes that control the direction of chemical transformations.

 Increasing demand from high technology sectors for better approaches to industrial production is prompting the emergence of a new generation of chemical synthesis methods.


Copyright : Dr. E.G.Gordeev, Ananikov Laboratory, Moscow

“Until recently, it was not possible to construct complex organic molecules by manipulating individual atoms,” says Professor Valentine Ananikov, laboratory head of the Zelinsky Institute of Organic Chemistry at the Russian Academy of Sciences.

“But the development of new lab equipment and state-of-the-art organic synthesis methods are facilitating a new direction in chemistry: the preparation of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with atomic precision.”

Traditional methods for the preparation of organic molecules require complicated technologies, the use of expensive catalysts and the application of toxic reagents.

Now, scientists from 14 different laboratories representing leading research centres in Russia are combining their expertise to develop safer and more costefficient procedures for chemical production.

Their strategy includes the replacement of expensive catalysts (such as palladium, platinum and rhodium) with easier to obtain and cheaper analogues (e.g. nickel, copper and manganese). The new approach also avoids the use of toxic reagents and the production of wastes by applying alternative procedures based on sustainable protocols.

Described in Russian Chemical Reviews, the team’s approach involves preparing a target molecule by connecting molecular fragments to each other with atomic precision and carrying out all chemical modifications with complete selectivity. So far, Professor Ananikov and his colleagues have applied the new approach to synthesise some 300 individual molecules – ranging from flame retardants and ligands for catalysis to biologically active compounds and pharmaceutical building blocks.

Among its achievements, the multidisciplinary team has shed new light on the factors responsible for the formation of chemical bonds between particular atoms or molecular fragments, while completely controlling the selectivity of these reactions. What’s more, in depth studies carried out in the 14 laboratories have resulted in efficient protocols for improving the performance of chemical transformations. They have also contributed to the development of a new generation of industrial procedures.

According to the Russian team, the new approach could also be used in connection with many established procedures for preparing organic molecules such as cross-coupling reactions, fluorination reactions, catalytic hydrogenations and oxidations, among others. The researchers are now focused on implementing atomic precision chemical reactions on an industrial scale and fostering international collaborations.

For further information contact:
Professor Valentine Ananikov
Zelinsky Institute of Organic Chemistry
Russian Academy of Sciences
E-mail: val@ioc.ac.ru

*This article also appears in Asia Research News 2015 (P.58).

Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Ananikov Laboratory | ResearchSEA

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>