Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive Atlas of Immune Cells in Renal Cancer

05.05.2017

Researchers from the University of Zurich have individually analyzed millions of immune cells in tumor samples from patients with renal cell carcinoma. They are now presenting an immunological atlas of the tumor environment for the first time, leading to possible further developments of immunotherapies.

Renal cell carcinoma is one of the most frequent and deadly urogenital cancers. Even if the tumors are treated, they ultimately end in metastasis in about half of the patients. 90 percent of these patients die within five years. Thanks to new kinds of immunotherapies, the outlook of this patient group has improved, but the treatment only works for a minority of patients.


Fluorescent imaging of a tumor section identifies different types of macrophages (green) and T cells (blue) present in the microenvironment of kidney cancer. (image: Karina Silina, UZH)

Composition of immune cells influences the prognosis of patients

To find out more about the body`s own defense against cancer cells – and how it can be strengthened – researchers headed by Bernd Bodenmiller at the Institute of Molecular Life Sciences of the University of Zurich have individually analyzed a total of 3.5 million immune cells in the tumor samples of 73 patients with renal cell carcinoma and in five healthy controls.

“The previous picture of immune defense was correct, but coarse,” says first author of the study, Stéphane Chevrier. “With our methods to analyze individual immune cells, we have been able to create an immunological atlas of the tumor environment for the first time with high resolution and in a large patient cohort. As a result, many more facets have now come to light.”

Whether a tumor can develop and persist at a certain point in the body mainly depends on the response of the immune system in the direct vicinity of the tumor. As the scientists report in the journal Cell, they have identified new relationships between the various immune cells thanks to the immune atlas.

In particular, the researchers have defined so-called immune cell signatures connected to the prognosis of the patients. The type and number of protein structures on the surface of immune cells play an essential role in regard to how the disease proceeds and how a patient responds to immunotherapies.

“Such information can help us better understand how these treatments can be adapted individually within the scope of personalized medicine,” Bernd Bodenmiller concludes.

Interruption of an additional signalling pathway as possible therapeutic objective

In addition, Bodenmiller’s team has shown that certain surface molecules with a therapeutic use (so-called checkpoints, such as PD-1 or CTLA-4) cannot be found on the immune cells of all patients. Substances that block these surface proteins prevent the immune cells from being inactivated during the defense against cancer.

These results could explain why the new types of checkpoint inhibitors work only for a minority of patients. With complex bioinformatic analyses, the group also discovered an additional target molecule called CD38, which can be found on the surface of inactivated or exhausted T-cells. Whether more renal cell carcinoma patients could be helped by targeting this additional CD38 signalling pathway will become clear in the near future. Bodenmiller’s research partners in Australia have already started to plan corresponding clinical testing.

Literature:
Stéphane Chevrier, Jacob Harrison Levine, Vito Riccardo Tomaso Zanotelli, Karina Silina, Daniel Schulz, Marina Bacac, Carola Hermine Ries, Laurie Ailles, Michael Alexander Spencer Jewett, Holger Moch, Maries van den Broek, Christian Beisel, Michael Beda Stadler, Craig Gedye, Bernhard Reis, Dana Pe’er, and Bernd Bodenmiller. An immune atlas of clear cell renal cell carcinoma. Cell.
4 May 2017. doi:10.1016/j.cell.2017.04.016

Contact:
Prof. Bernd Bodenmiller, PhD
Institute of Molecular Life Sciences
University of Zurich
Phone: +41 44 635 31 28
E-mail: bernd.bodenmiller@imls.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2017/immune-atlas-of-renal-cell-carcin...

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>