Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Complex nerve-cell signaling traced back to common ancestor of humans and sea anemones


New research shows that a burst of evolutionary innovation in the genes responsible for electrical communication among nerve cells in our brains occurred over 600 million years ago in a common ancestor of humans and the sea anemone.

The research, led by Timothy Jegla, an assistant professor of biology at Penn State University, shows that many of these genes, which when mutated in humans can lead to neurological disease, first evolved in the common ancestor of people and a group of animals called cnidarians, which includes jellyfish, coral, and sea anemones.

Complex nerve-cell signaling were traced back to common ancestor of humans and sea anemones.

Credit: Steve Rupp, National Science Foundation

A paper describing the research is scheduled to be posted online in the Early Edition (EE) of the journal Proceedings of the National Academy of Sciences of the United States of America sometime during the week beginning February 16, 2015. High-resolution images and a 10-second video are online at

"Our research group has been discovering evidence for a long time that most major signaling systems in our neurons are ancient, but we never really knew when they first appeared," Jegla said. "We had always assumed that we would be able to trace most of these signaling systems to the earliest nervous systems, but in this paper we show that this is not the case. It looks like the majority of these signaling systems first appear in the common ancestor that humans share with jellyfish and sea anemones."

Electrical impulses in nerve cells are generated by charged molecules known as ions moving into and out of the cell through highly specialized ion-channel proteins that form openings in the cell membrane. The new research focuses on the functional evolution of the genes that encode the proteins for potassium channels -- ion channels that allow potassium to flow out of nerve cells, stopping the cell's electrical impulses. "The channels are critical for determining how a nerve cell fires electrical signals," said Jegla. "It appears that animals such as sea anemones and jellyfish are using the same channels that shape electrical signals in our brains in essentially the same way."

"Humans and sea anemones went their separate ways evolutionarily speaking roughly 600 million years ago," said Jegla, "so we know that the mechanisms we use to generate impulses in our neurons must be at least that old." The team then tried to trace these channels back even further in evolutionary time -- to the very origins of the nervous system.

"One of the exciting recent findings in evolutionary biology is that the nervous system might be much older than the ancestor of sea anemones and humans," Jegla said. Recent genome sequences from comb jellies, which also have nervous systems, show that they are a more ancient group of animals than sea anemones and might even be the oldest type of animals that are still living today. "When we looked at comb jellies, we found that the potassium channels looked very different -- most of the channel types found in humans were missing," said Jegla. "We could trace only one kind of the human potassium channels that we looked at all the way back to comb jellies, but we find almost all of them in sea anemones."

The implication is that many of the mechanisms we use to control electrical impulses in our neurons were not present in the earliest nervous systems. The team did find many different potassium channels in comb jellies, but they appear to have evolved independently after the comb jelly lineage split from that of our ancestors. "We don't know how complex electrical signaling is in living comb jellies, but it probably wasn't very complex in our common ancestor," said Jegla. The team now is interested in figuring out what drove the burst of innovation in ion channels in our common ancestor with sea anemones.

"We don't yet understand why our ion channels evolved at that time, but the changes in the ability of nerve cells to generate electrical signals must have been revolutionary," said Jegla. "Our current favorite hypothesis is that neurons capable of directional signaling might have evolved at this time." In human nervous systems, most nerve cells have a polar structure with separate regions for inputs and outputs. This allows for directional information flow and highly complex circuits of nerve cells, but it requires a huge diversity of ion channels to shape the electrical signals as they pass through the polar nerve cells. "If our hypothesis turns out to be correct, we may be able to gain some important insights into how nerve cells and circuits evolved by studying sea anemones," said Jegla. "There is a lot that remains to be discovered about how we build polar neurons, and we can use evolution to point out the really important mechanisms that have been conserved through animal history."

In addition to Jegla, the research team at Penn State includes graduate students Xiaofan Li, Hansi Liu, and Bishoy Hanna; undergraduate students Fortunay Diatta, Sarah Rhodes, Liana Trigg, Jessica Sassic, and Jose Chu-Luo; Research Associate Damian van Rossum; and Associate Professor of Biology Monica Medina. Professor Mark Q. Martindale and Graduate Student David Simmons from the Whitney Laboratory for Marine Bioscience at the University of Florida and Research Associate Andriy Anishkin at the University of Maryland, also contributed to the study.

[ Sam Sholtis ]


Timothy Jegla:, 814-865-1668

Barbara Kennedy (PIO):, 814-863-4682


High-resolution images and a 10-second video are online at

Media Contact

Barbara K. Kennedy


Barbara K. Kennedy | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>