Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Competition favors shy tits

10.03.2016

Different personalities are maintained in the wild mainly because of changes in density. This is what researchers of the Max Planck Institute for Ornithology in Seewiesen and colleagues of the University Groningen found out for great tits. During four years, they observed that slow explorers are more likely to survive if intraspecific competition increases due to an increase of density in a population. But although individuals are able to anticipate future breeding densities, they are amazingly bad in adjusting their exploratory behavior and therefore their chance to survive: Instead of slowing down, birds increased their speed of exploration when facing increases in density between years.

Exploratory behavior is a repeatable and heritable trait in West-European great tit populations and therefore underlies selection pressures in nature like all heritable differences in personality. Explorative individuals are more likely to take risks and to obtain higher social dominance ranks among territorial adults in the wild.


Great Tits have personality: They come as fast- and slow-explorers. Which type is more successful depends on the population density.

Richard Ubels

It might seem that those birds are doing better in competitive environments, such as in high densities, as they are better in defeating limited resources when intraspecific competition increases in a population. When competition is relaxed, net benefits may instead decrease because risky behaviors require more energy.

Researchers of the Max Planck Institute for Ornithology Seewiesen and the University of Groningen, however, followed another prediction: Fast-exploring, aggressive phenotypes may survive less well when facing high densities as they are less able to anticipate and buffer changes in their social environment.

For their study, the researchers regularly controlled 600 nest-boxes in 12 woodlots over four years and calculated the densities within and between the populations. Fitness was calculated as survival probability and number of recruits. Exploratory behavior was assayed in a “novel environment room” where the total number of flights and hops within the first two minutes after arrival of an animal was counted.

“The density effect on the different personality types was amazingly strong”, says Niels Dingemanse, research group leader in Seewiesen. Survival rates of fast explorers decreased with increasing density equally strongly as survival rates increased for slow explorers. These fluctuating selection pressures were mostly explained by year-to-year variation in density within rather than spatial variation among the 12 study plots.

Predicting the competition of next year

The design of the study did not only allow the researchers to understand how the different personality types underlie density dependent selection, but also if an individual is able do adjust its exploration behavior depending on the population density. „Our data show that great tits are able to anticipate future breeding densities as they are able to change their exploratory behavior between years“, says Marion Nicolaus, first author of the study.

In autumn, great tits may calculate the competition for breeding space in spring by the amount of beech seeds available: If there is a lot of food, chances to survive the winter are better. However, the birds were unable to appropriately adjust their exploratory behavior as they did not adaptively down-regulate their exploratory tendency with increasing density. According to the scientists, this explains why selection favors a mix of personality types rather than one single flexible type of individual.

Interestingly, psychologists also predict for human populations that competitive environments should favor sociable, shy, and non-aggressive individuals. In contrast, individuals with high levels of exploratory activity or aggression should perform relatively better in declining populations (e.g. because of habitat loss). “Whether this potential loss of personality variation affects the adaptive capacity of populations is currently unknown but represents an important question in both the social and natural sciences”, says Niels Dingemanse.

Publication:
Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Marion Nicolaus, Joost M. Tinbergen, Richard Ubels, Christiaan Both and Niels J. Dingemanse. Ecology Letters, Article first published online: 29 Feb 2016. DOI: 10.1111/ele.12584

Contakt:
Dr. Marion Nicolaus
Max Planck Institute for Ornithology
Research Group „Evolutionary Ecology of Variation“
E-Mail: mnicolaus@orn.mpg.de

Prof. Dr. Niels J. Dingemanse
Max Planck Institute for Ornithology
Research Group „Evolutionary Ecology of Variation“
E-Mail: ndingemanse@orn.mpg.de

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Further information:
http://www.orn.mpg.de

Further reports about: Competition Max-Planck-Institut Ornithology shy tits

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>