Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combatting hospital-acquired infections with protein metal complex

05.03.2014

A protein containing a metal complex for blue paint inhibits growth of a pathogenic bacterium through iron deprivation

Nagoya, Japan – Professor Yoshihito Watanabe (WPI-ITbM, Cooperating Researcher), Associate Professor Osami Shoji, Ms. Chikako Shirataki of Nagoya University and co-workers have found a new method using an artificial metalloprotein (a protein that contains a metal) to inhibit the growth of Pseudomonas aeruginosa bacteria, which is a common bacterium that can cause diseases in humans and evolves to exhibit multiple antibiotic resistance.


Figure 1. Heme iron capturing mechanism of P. aeruginosa bacteria by HasA protein.

Copyright : Nagoya University


Figure 2. Inhibition of heme iron uptake of P. aeruginosa by phthalocyanine-bound HasA protein.

Copyright : Nagoya University

The inhibition of growth has been achieved through the deprivation of iron uptake using an artificial metalloprotein. The study published in the online Early View on February 7, 2014 of Angewandte Chemie International Edition, is expected to bring hope in the battle against bacteria.

P. aeruginosa bacteria exists in many aquatic areas and is prevalent in hospitals. Although they do not usually affect healthy people, they increase the risk for infection of patients with low immunity. Their high resistance towards many antibiotics makes complete elimination of them extremely difficult. Like humans, bacteria require the uptake of heme iron for their survival, and a protein (HasA) is secreted from bacteria to capture heme from its host. The heme-bound HasA protein transfers heme via receptor proteins on the cell surface of the bacterium, P. aeruginosa (Figure 1).

“Upon looking closely at the crystal structure of the HasA protein binding heme, we considered the possibility of the HasA protein to bind to a metal complex that has a similar structure as heme” says Associate Professor Osami Shoji, who led the study. “We found synthetic metal complexes that can mimic heme and bind to the HasA protein. To our delight, one of the resulting complexes successfully inhibited growth of P. aeruginosa bacteria.” 

“It took us around four years to discover that phthalocyanine, which is a blue paint used on the surface of the Japanese bullet trains and road signs, could bind competitively to the HasA protein”, adds Ms. Chikako Shirataki, a PhD student in her final year, “crystal structures of metal protein complexes helped us to show that the phthalocyanine-bound HasA protein blocks the receptors on the cell surface of the bacterium and thus, inhibits the uptake of heme.” When bacteria are deprived of iron, further growth of the bacteria is inhibited (Figure 2).

P. aeruginosa infections can potentially lead to pneumonia and an effective treatment method is highly required. This finding by Shoji’s group opens new doors to treat P. aeruginosa infections by using an unprecedented approach to inhibit the growth of bacteria. Associate Professor Shoji states, “With the advice of medical doctors, we are currently working to develop a new system to wipe out bacteria by tuning various metal complexes. Although the efficiency is not high yet, we have already established a mechanism to eliminate bacteria and we are considering how to apply it to different cases.”

ichi Ozaki, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe, is published in the Early View on February 7, 2014 in Angewandte Chemie International Edition. The article was selected as an inside cover. DOI: 10.1002/anie.201307889

This work was conducted with Mitsuyoshi Terada of Nagoya University, Professor Shin-ichi Ozaki of Yamaguchi University, Dr. Hiroshi Sugimoto and Professor Yoshitsugu Shiro of RIKEN SPring-8 Center, Harima Institute.

Author Contact
Associate Professor Osami Shoji
Department of Chemistry, Graduate School of Science, Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan
TEL/FAX: +81-52-789-3557
E-mail: osami.shoji@a.mbox.nagoya-u.ac.jp

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: ayako.miyazaki@itbm.nagoya-u.ac.jp

Nagoya University Public Relations Office TEL: +81-52-789-2016 FAX: +81-52-788-6272
E-mail: kouho@post.jimu.nagoya-u.ac.jp

Associated links

Journal information

Angewandte Chemie International Edition

Ayako Miyazaki | Research SEA

Further reports about: aeruginosa artificial bacteria bacterium infections resistance structure

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>