Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating Iron in the Brain: Researchers Find Anti-Aging Micromolecule

14.02.2017

During aging as well as during Alzheimer’s or Parkinson’s disease, iron accumulates in the human brain. Now, researchers from German Leibniz Institute on Aging (FLI) in Jena and Italian Scuola Normale Superiore in Pisa found that in vertebrates, a microRNA called miR-29 inhibits these deposits – possibly offering new ways to treat Alzheimer’s and Parkinson’s disease as well as strokes. Results were published in the Journal BMC Biology on February 13, 2017.

MicroRNA as anti-aging molecule in brain


The aging model N. furzeri was used to show that neurons are protected from iron-accumulation by an anti-aging microRNA.

credit: FLI/Grimm/Kästner

The older we get, our brain ages. Cognitive abilities decline and the risk of developing neurodegenerative diseases like dementia, Alzheimer’s and Parkinson’s disease or having a stroke steadily increases. A possible cause is the accumulation of iron molecules within neurons, which seems to be valid for all vertebrates.

In a collaborative research project within the consortium JenAge, researchers from the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, and the Scuola Normale Superiore (SNS) in Pisa, Italy, found that this iron accumulation is linked to a microRNA called miR-29. This little molecule has so far been known to act as a tumor suppressor, hindering the proliferation of cancer cells. However, clearly, miR-29 also regulates whether or not iron can be deposited in neurons.

Using the African fish Nothobranchius furzeri – the shortest-living vertebrate that can be kept under laboratory conditions – the team of Alessandro Cellerino showed a large increase of iron deposits in fish where miR-29 had been suppressed, which led to premature brain aging. In contrast, healthy fish showed the more miR-29 in their neurons, the older they were. Hence, miR-29 acts as a kind of anti-aging molecule during aging, inhibiting the accumulation of iron in neurons.

New therapeutic approach for the treatment of neurodegenerative diseases and strokes

„We strongly believe that our results are relevant for humans as well“, says Alessandro Cellerino, Professor of Physiology at SNS in Pisa and guest scientist at the FLI, who is one of the study’s leaders. In fact, the link between an increased iron accumulation and neurodegenerative diseases or strokes in humans has been known for some time; there are also results showing a reduced concentration of miR-29 in these diseases. However, it is totally new that miR-29 acts as molecular switch that inhibits iron accumulation.

“These results are surprising – and very promising, because the development of miR-29-based pharmaceuticals for cancer therapy is already ongoing. This may offer a head start for the development of new therapies for Parkinson’s or Alzheimer’s disease and for the treatment of strokes as well”, Cellerino adds.

First biomedical discovery in the young aging model “N. furzeri“

African killifish Nothobranchius furzeri has only recently been introduced as animal model in aging research. It was the deciphering of the fish’s genome in late 2015 by the Leibniz Institute on Aging (FLI) that laid the foundation for genetic studies in this fast-aging vertebrate. “The investment of ten years, which it took us and our collaborators to decipher the genome, now starts to pay off”, explains Prof. K. Lenhard Rudolph, who is the FLI’s Scientific Director.

And Mario Baumgart, a Postdoc at the FLI that was involved in the study, adds: “There’s no other vertebrate showing such a rapid aging as this little fish. It is like aging in fast motion. Moreover, 90% of human genes can be found in the fish as well, making almost all knowledge gained from N. furzeri transferable to humans.” This is why the results about the molecular switch miR-29, which were published on February 13, 2017 in the journal BMC Biology are so promising and mean a further step towards the treatment of neurodegenerative diseases.

Publication

Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron
accumulation during adult life and aging. BMC Biology 2017, 15:9, DOI: 10.1186/s12915-017-0354-x.

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) | Beutenbergstr. 11 | 07745 Jena, Germany
p. +49 3641-656373, e. presse@leibniz-fli.de

Andrea Pantani
Scuola Normale Superiore Pisa | Piazza dei Cavalieri, 7 | 56126, Pisa, Italy
p. +39 050 509324, e. andrea.pantani@sns.it


Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Scuola Normale Superiore was founded by Napoleonic decree in October, 1810. The Scuola Normale Superiore is a public institute for higher education that in its two centuries of life has earned itself a special place, both in Italy and abroad, a place characterised by merit, talent and scientific rigour. The teaching and research activities are distributed among three academic structures, the Faculty of Humanities, the Faculty of Mathematical and Natural Sciences, placed in Pisa, and the Institute of Humanities and Social Sciences, located in Palazzo Strozzi in Florence. For more information, please visit http://www.SNS.it.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>