Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful clones: Researchers track development and behavior of individual blood stem cells

24.11.2016

Harvard Stem Cell Institute (HSCI) researchers have used a colorful, cell-labeling technique to track the development of the blood system and trace the lineage of adult blood cells travelling through the vast networks of veins, arteries, and capillaries back to their parent stem cell in the marrow. Their findings have already advanced the understanding of blood development as well as blood diseases.

Developed at Harvard's Center for Brain Science, the technique involves coding multiple colors of florescent protein into a cell's DNA. As genes recombine inside the cell, the cell elaborates a color unique to its genetic code. For blood stem cells, that color becomes a genetic signature passed down to daughter cells; purple stem cells, for example, will only make purple blood cells.


Color-labeling blood stem cells allows HSCI researchers to track how they respond to transplantation or stress.

Credit: Vionnie Yu

Two independent research teams, one led by David Scadden, HSCI co-director and Gerald and Darlene Jordan Professor of Medicine at Harvard University, and the other by his colleague Leonard Zon, HSCI Executive Committee member and director of the Stem Cell Program at Boston Children's Hospital, adapted the color-based labeling to the blood system to better understand how blood stem cells behave.

In a study recently published in Nature Cell Biology, a research team led by Scadden found that in mice individual blood stem cells had a specific and restricted blood production repertoire.

"We used to think of stem cells as the mother cell that gives rise to all these other cells in the system on an as needed basis," said Vionnie Yu, first author of the study and, at the time of the research, a postdoctoral fellow in Scadden's lab. But their results suggest that stem cells have a scripted set of responses and cannot make just any blood cell type.

When transplanted into a new environment, each cell not only consistently made the same mature blood cell types but also the same number of those cells. Additionally, clones responded similarly to inflammatory and chemotoxic stress, suggesting the cells had a hardwired memory dictating their behavior. They found that this memory was written into the stem cell epigenome.

Blood stem cells, said Scadden, may be more like chess pieces with a fixed way they can behave within the system.

"When you are young and have a full chess set you can mount a vigorous and multilayered defense to an attack on your system," Scadden said, "but if you lose chess pieces with age or you don't receive a full suite of players during a bone marrow transplant, the pieces you have left could determine your ability to protect yourself."

In addition to looking at blood stem cells in adult mice, color tagging also allows researchers to explore the blood system as a zebrafish embryo develops.

"We've been working with David Scadden for years as part of the HSCI. Initially, we presented our work at a joint lab meeting and realized we could study stem cell clones with this multi-color system," said Zon, who is also a professor in Harvard's Stem Cell and Regenerative Biology department. "We shared ideas and results, and even wrote a grant together on the topic. It is wonderful that studying clonal dynamics in two different animals could provide such complementary information."

In a study published yesterday in Nature Cell Biology, the researcher team led by Zon used the color tagging system to define the origin and number of stem cells that contribute to lifelong blood production.

About 24 to 30 hours after fertilization, dozens of stem cells budded off from the dorsal side of the aorta. Only twenty made it to a secondary site before heading to the kidney marrow, the zebrafish equivalent to human and mouse bone marrow.

After transplanting the multicolored marrow into fish that had received sublethal doses of radiation, the researchers found that some blood stem cell lineages supplied a greater proportion of blood than they had before and that certain lineages could survive harsher conditions than others.

Knowing which cells are responsible for blood production could have implications for understanding the development of blood cancers, explains Jonathan Henninger, a graduate student in Zon's lab at Boston Children's Hospital and first author in the study.

For example, one blood stem cell could develop a mutation that gives it a competitive edge, allowing it to take over the blood system.

"If that cell starts behaving badly, it could lead to blood disorders, such as myeloid dysplasia and leukemia," Henninger said.

Researchers know these disorders come from a single stem cell or a downstream progenitor cell, said Henninger, but right now they are looking at populations of stem cells in bulk. "To be able to identify that single cell that went awry could help us better understand these diseases."

Media Contact

Hannah Robbins
hannah_robbins@harvard.edu
617-496-1491

 @HarvardMed

http://hms.harvard.edu 

Hannah Robbins | EurekAlert!

Further reports about: HSCI Harvard Nature Cell Biology blood cell blood stem cells blood system clones stem cells

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>