Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorful clones: Researchers track development and behavior of individual blood stem cells

24.11.2016

Harvard Stem Cell Institute (HSCI) researchers have used a colorful, cell-labeling technique to track the development of the blood system and trace the lineage of adult blood cells travelling through the vast networks of veins, arteries, and capillaries back to their parent stem cell in the marrow. Their findings have already advanced the understanding of blood development as well as blood diseases.

Developed at Harvard's Center for Brain Science, the technique involves coding multiple colors of florescent protein into a cell's DNA. As genes recombine inside the cell, the cell elaborates a color unique to its genetic code. For blood stem cells, that color becomes a genetic signature passed down to daughter cells; purple stem cells, for example, will only make purple blood cells.


Color-labeling blood stem cells allows HSCI researchers to track how they respond to transplantation or stress.

Credit: Vionnie Yu

Two independent research teams, one led by David Scadden, HSCI co-director and Gerald and Darlene Jordan Professor of Medicine at Harvard University, and the other by his colleague Leonard Zon, HSCI Executive Committee member and director of the Stem Cell Program at Boston Children's Hospital, adapted the color-based labeling to the blood system to better understand how blood stem cells behave.

In a study recently published in Nature Cell Biology, a research team led by Scadden found that in mice individual blood stem cells had a specific and restricted blood production repertoire.

"We used to think of stem cells as the mother cell that gives rise to all these other cells in the system on an as needed basis," said Vionnie Yu, first author of the study and, at the time of the research, a postdoctoral fellow in Scadden's lab. But their results suggest that stem cells have a scripted set of responses and cannot make just any blood cell type.

When transplanted into a new environment, each cell not only consistently made the same mature blood cell types but also the same number of those cells. Additionally, clones responded similarly to inflammatory and chemotoxic stress, suggesting the cells had a hardwired memory dictating their behavior. They found that this memory was written into the stem cell epigenome.

Blood stem cells, said Scadden, may be more like chess pieces with a fixed way they can behave within the system.

"When you are young and have a full chess set you can mount a vigorous and multilayered defense to an attack on your system," Scadden said, "but if you lose chess pieces with age or you don't receive a full suite of players during a bone marrow transplant, the pieces you have left could determine your ability to protect yourself."

In addition to looking at blood stem cells in adult mice, color tagging also allows researchers to explore the blood system as a zebrafish embryo develops.

"We've been working with David Scadden for years as part of the HSCI. Initially, we presented our work at a joint lab meeting and realized we could study stem cell clones with this multi-color system," said Zon, who is also a professor in Harvard's Stem Cell and Regenerative Biology department. "We shared ideas and results, and even wrote a grant together on the topic. It is wonderful that studying clonal dynamics in two different animals could provide such complementary information."

In a study published yesterday in Nature Cell Biology, the researcher team led by Zon used the color tagging system to define the origin and number of stem cells that contribute to lifelong blood production.

About 24 to 30 hours after fertilization, dozens of stem cells budded off from the dorsal side of the aorta. Only twenty made it to a secondary site before heading to the kidney marrow, the zebrafish equivalent to human and mouse bone marrow.

After transplanting the multicolored marrow into fish that had received sublethal doses of radiation, the researchers found that some blood stem cell lineages supplied a greater proportion of blood than they had before and that certain lineages could survive harsher conditions than others.

Knowing which cells are responsible for blood production could have implications for understanding the development of blood cancers, explains Jonathan Henninger, a graduate student in Zon's lab at Boston Children's Hospital and first author in the study.

For example, one blood stem cell could develop a mutation that gives it a competitive edge, allowing it to take over the blood system.

"If that cell starts behaving badly, it could lead to blood disorders, such as myeloid dysplasia and leukemia," Henninger said.

Researchers know these disorders come from a single stem cell or a downstream progenitor cell, said Henninger, but right now they are looking at populations of stem cells in bulk. "To be able to identify that single cell that went awry could help us better understand these diseases."

Media Contact

Hannah Robbins
hannah_robbins@harvard.edu
617-496-1491

 @HarvardMed

http://hms.harvard.edu 

Hannah Robbins | EurekAlert!

Further reports about: HSCI Harvard Nature Cell Biology blood cell blood stem cells blood system clones stem cells

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>