Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold mountain streams offer climate refuge: Future holds hope for biodiversity

06.04.2016

A new study offers hope for cold-water species in the face of climate change. The study, published today in the Proceedings of the National Academy of Sciences, addresses a longstanding paradox between predictions of widespread extinctions of cold-water species and a general lack of evidence for those extinctions despite decades of recent climate change.

The paper resulted from collaborative research led by the U.S. Forest Service with partners including the U.S. Geological Survey, the National Ocean and Atmospheric Administration, University of Georgia and the Queensland University of Technology.


This is a Northwest United States temperature and climate map developed from data at more than 16,000 sites that was used to highlight climate refugia for mountain stream species.

Credit: Dan Isaak, U.S. Forest Service

The research team drew information from huge stream-temperature and biological databases contributed by over 100 agencies and a USGS-run regional climate model to describe warming trends throughout 222,000 kilometers (138,000 miles) of streams in the northwestern United States.

The scientists found that over the last 40 years, stream temperatures warmed at the average rate of 0.10 degrees Celsius (0.18 degrees Fahrenheit) per decade. This translates to thermal habitats shifting upstream at a rate of only 300-500 meters (0.18-0.31 miles) per decade in headwater mountain streams where many sensitive cold-water species currently live.

The authors are quick to point out that climate change is still detrimentally affecting the habitats of those species, but at a much slower rate than dozens of previous studies forecast. The results of this study indicate that many populations of cold-water species will continue to persist this century and mountain landscapes will play an increasingly important role in that preservation.

"The great irony is that the cold headwater streams that were believed to be most vulnerable to climate change appear to be the least vulnerable. Equally ironic is that we arrived at that insight simply by amassing, organizing and carefully analyzing large existing databases, rather than collecting new data that would have been far more expensive," said Dr. Daniel Isaak, lead author on the study with the U.S. Forest Service.

The results also indicate that resource managers will have sufficient time to complete extensive biological surveys of ecological communities in mountain streams so that conservation planning strategies can adequately address all species.

"One of the great complexities of restoring trout and salmon under a rapidly changing climate is understanding how this change plays out across the landscape. Dr. Isaak and his colleagues show that many mountain streams may be more resistant to temperature change than our models suggest and that is very good news. This provides us more time to effect the changes we need for long-term persistence of these populations," said Dr. Jack Williams, senior scientist for Trout Unlimited.

This study is complementary and builds upon the Cold-Water Climate Shield. This new study is unique as it describes current trends rather than relying on future model projections and addresses a broad scope of aquatic biodiversity in headwater streams (e.g., amphibians, sculpin and trout). In addition, the data density and geographic extent of this study is far greater than most previous studies because over 16,000 stream temperature sites were used with thousands of biological survey locations to provide precise information at scales relevant to land managers and conservationists.

###

The study, entitled "Slow climate velocities of mountain streams portends their role as refugia for cold-water biodiversity" was conducted by Daniel Isaak, lead author from the U.S. Forest Service Rocky Mountain Research Station; Michael Young, Charles Luce, Dona Horan, Matt Groce and David Nagel of the U.S. Forest Service Rocky Mountain Research Station; Steven Hostetler, U.S. Geological Survey; Seth Wenger, University of Georgia; Erin Peterson, Queensland University of Technology; and Jay Ver Hoef, U.S. NOAA Fisheries, Alaska Fisheries Science Center. Additional funding for this research was provided by the U.S. Fish and Wildlife Service Great Northern and North Pacific Landscape Conservation Cooperatives.

States covered by this study are Idaho, Oregon, Washington, western Montana, as well as small portions of western Wyoming, northern Nevada, northern Utah and northern California.

Media Contact

Jennifer Hayes
jenniferhayes@fs.fed.us
970-498-1365

 @USGS

http://www.usgs.gov 

Jennifer Hayes | EurekAlert!

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>