Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cohesin: a cherry-shaped molecule safeguards cell-division

21.11.2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like function by visualizing for the first time the open form of the complex. The journal SCIENCE publishes the new findings in its current issue.

The ring-shaped cohesin complex ensures that each round of cell division yields two daughter cells with identical sets of chromosomes. The peculiar molecule and its function were discovered in Kim Nasmyth’s lab at the IMP in 1997.


Mitotic cells with microtubules (green), centromeric regions (red), and chromosomes (blue). Background: cleaved cohesion molecules visualized by electron microscopy

IMP

The conclusions that the researchers drew from their observations back then were unexpected. A molecule shaped like a ring was proposed to hold the two nascent DNA-strands together - much like a rubber band - until the exact moment had arrived for separation. Only then would the ring snap open and release the two copies of chromosomes on which the genetic information is stored.

In the following years, this mechanism was not only confirmed but further and far-reaching functions of cohesin were discovered, such as its importance for DNA damage repair and for the structure of chromatin. However, cohesin itself was never seen in action. In the living cell, the opening of the ring is an extremely fast process and doesn’t last long enough to be captured.

Pim Huis in ‘t Veld, a former PhD-student in the lab of IMP-director Jan-Michael Peters, has now found an indirect way of visualizing cohesin at the moment when it opens up and releases DNA. After toiling with the problem for five years, he is now able to construct a synthetic cohesin molecule from its molecular building-blocks. The method involves infecting cultured ovarian cells from the army worm with baculoviruses to engineer the necessary proteins.

By inserting mutations, Pim Huis in ‘t Veld was able to force cohesin- into its open form and remain there. A transmission electron microscope and a 72,000-fold magnification then did the trick and cohesin’s open state was for the first time captured on screen. The images show tiny structures with two thread-like arms, connected by a molecular hinge. A more poetic association that comes to mind is that of a pair of ripe cherries.

For researchers in the field of cell and structural biology, the confirmation of the postulated mechanism of action is an important step towards understanding the details of cell division. The US-journal SCIENCE therefore features the new findings prominently in its current issue, flanked by a complementing article from the labs of Kim Nasmyth (Oxford) und Jan Löwe (Cambridge).

Elucidating the function of Cohesin is also highly relevant for human medicine. Jan-Michael Peters explains why: “A number of tumors are associated with mutations in cohesin genes, among them certain forms of leukemia and bladder cancer. Mistakes in cell division, caused by malfunctioning cohesin, can also lead to chromosomal aberrations like trisomy 21 (Down syndrome). Even the age-related decrease in female fertility and a high percentage of spontaneous miscarriages are attributed to cohesin defects.”

Publication
Pim J. Huis in ’t Veld et al.: Characterization of a DNA exit gate in the human cohesin ring. SCIENCE, November 21, 2014.

About the IMP

The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 35 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact

Dr. Heidemarie Hurtl 

IMP Communications

Phone: +43 1 79730 3625

E-mail: hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>