Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Closer look at microorganism provides insight on carbon cycling


Some of the world's tiniest organisms may have a large impact on climate change.

Researchers from the U.S. Department of Energy's Argonne National Laboratory and the University of Tennessee found that microorganisms called archaea living in marine sediments use completely novel enzymes to break down organic matter into carbon dioxide.

An Argonne/University of Tennessee research team reconstructed the crystal structure of BAP, a protein involved in the process by which marine archaea release carbon, to determine how it functioned, as well as its larger role in carbon cycling in marine sediments. Research was performed at the Advanced Photon Source and the Advanced Protein Characterization Facility.

Image courtesy Andrzej Joachimiak/Argonne National Laboratory

These single-celled archaea eat organic carbon in marine sediments. Enzymes in the archaea break down large carbon molecules into smaller units. This process releases carbon dioxide and methane into the water and eventually, into the atmosphere.

However, as the temperature of oceans and bodies of freshwater increases, this carbon cycling process accelerates. The temperature at the bottom of the ocean, for example, is approximately two to four degrees Celsius (35 to 39 degrees Fahrenheit). According to Andrzej Joachimiak, Argonne distinguished fellow and director of the Structural Biology Center, if the ocean temperature rises one or two degrees, the rate of carbon release might increase.

"About 40 percent of Earth's organic carbon is stored in marine sediments," Joachimiak said. "An increase in temperature and acceleration of the carbon cycling process in these sediments is a major concern."

Joachimiak said scientists are uncertain about how fast archaea process carbon and whether the release is accelerating. Once researchers have these statistics, they may find ways to better predict the environment's response to a changing climate.

This understanding starts at the molecular level. Using resources at the Advanced Photon Source, a DOE Office of Science User Facility, and the Advanced Protein Characterization Facility, the research team produced and crystallized bathyaminopeptidase, or BAP - one of the enzymes found in the archaea - to look into its structure and observe how it operates. They found that BAP plays an important role in breaking down proteins and, consequently, the turnover of atmospheric carbon.

The biggest challenge the researchers had was determining BAP's function, because no previously cultured organisms shared a close ancestry. These types of organisms are considered microbial "dark matter" because their physiologies are unknown and they have never been grown in a lab.

And because it is difficult to study their physiologies, scientists cannot determine their precise impact on ecosystems and major global events. For example, BAP was found to be structurally similar to the known amino acid ester hydrolase, but had evolved to serve an entirely different function.

Despite this challenge, the researchers demonstrated that detailed characterization of enzymes from microbial dark matter can be done without first having to grow those organisms in the lab, which may be difficult or time-consuming.

"Being able to characterize proteins directly from microbial dark matter, without requiring that they first be grown in a lab, opens up limitless possibilities for discovering novel functions of these strange organisms that control the breakdown of carbon in marine sediments," said Karen Lloyd, assistant professor in the department of microbiology at the University of Tennessee.

According to Karolina Michalska, assistant protein crystallographer in the Biosciences Division, it was originally believed that bacteria were the primary players in the degradation of proteins in marine sediments. But the research shows that archaea are also involved in the process.

"It seems that archaea have a larger role in organic carbon, or protein, degradation than we previously realized," Michalska said.

The study, "New aminopeptidase from 'microbial dark matter' archaeon," was published June 10 in The FASEB Journal. The research was supported by the U.S. Department of Energy's Office of Science, by the U.S. National Institutes of Health and by the Center for Dark Energy Biosphere Investigations led by the University of Southern California. Studies were performed at the 19-Insertion Device Beamline, operated by the Structural Biology Center at the Advanced Photon Source at Argonne, and at Argonne's Advanced Protein Characterization Facility.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Media Contact

Brian Grabowski


Brian Grabowski | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>