Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closed-loop stimulation promises fewer side effects

03.02.2016

How adaptive stimulation could make a significant difference for patients with neurological disorders such as Parkinson’s disease

Could potential side effects in the treatment of Parkinson’s disease with stimulation be avoided with a closed-loop approach, which constantly adapts to the symptoms?


Image source: Gunnar Grah/BrainLinks-Braintools

This is one of the key questions Dr. Ioannis Vlachos and his colleagues Taskin Deniz, Prof. Dr. Ad Aertsen, and Prof. Dr. Arvind Kumar address in a study that was now published in the journal “PLoS Computational Biology.”

The approach developed at Bernstein Center Freiburg and BrainLinks-BrainTools cluster of excellence of Freiburg University offers a significant step forward in the research for innovative methods in the treatment of Parkinson’s disease (PD):

“There are currently only two common therapies to treat this disease. Either you can administer drugs or, if this does not work, one has to resort to electrical stimulation, the so-called deep brain stimulation,” Vlachos explains. In the latter approach, which currently follows a method known as open-loop stimulation, an electrode is implanted in the patient’s brain to provide a continuous train of stimulation pulses. “In principle, this resembles the approach of the cardiac pacemaker,” says Vlachos.

However, the symptoms of Parkinson’s disease are not constant. And therefore, the researchers argue, constantly stimulating the brain with the same signal is not the most efficient treatment.

“In our closed-loop approach, the electrode provides a stimulus that adjusts to the momentary symptoms. Through this method we are hoping to avoid some side effects such as gait imbalance or speech impairment which occur in conventional DBS treatment”, Vlachos explains.

In this new closed-loop approach, brain activity is recorded and fed to a neuroprosthetic device, which then adjusts the stimulation strength. The controller continuously monitors the brain activity that reflects the severity of the PD symptoms. The nature of the recorded activity determines the stimulation signal.

If stronger stimulation is required, the control input gets stronger, if the activity becomes weaker, the stimulation is weakened, and if there is no pathological activity the device will not provide any stimulation. “This saves battery life and, hence, increases recharging and maintenance intervals – clearly an advantage for the patient carrying the battery,” the researcher explains.

The same approach could be used for the treatment of other brain diseases such as epilepsy or schizophrenia. Moreover, Vlachos' method could also be used to devise controllers for non-invasive stimulation, such as transcranial stimulation techniques. This means that the brain can be stimulated from the outside, without the need to drill a hole into the skull and implant an electrode into the brain.

The closed-loop stimulation method developed by Vlachos and colleagues can further be adapted to influence brain activity to address basic science questions:

“For instance, when animals attend to an input there is often an increase in oscillations. Using our controller, we can modulate the strength of oscillations and test if and how our attention is affected by such network oscillations.” After promising results in computer simulations modeling the activity dynamics of large networks of neurons, the next step will be to verify the approach in animal models, before it can be tested in human patients.

Original Publication:
Vlachos I, Deniz T, Aertsen A, Kumar A (2016) Recovery of dynamics and function in spiking neural networks by closed-loop control. PLoS computational biology 12(2), e1004720

Contact:
Dr. Ioannis Vlachos
Bernstein Center Freiburg / BrainLinks-BrainTools
University of Freiburg
Phone: +49 (0)761 / 203 - 9569
Fax: +49 (0)761 / 203 – 9559
E-Mail: vlachos@bcf.uni-freiburg.de

Michael Veit
Science Communicator
Bernstein Center Freiburg
Phone: +49 (0)761 / 203 - 9322
E-Mail: michael.veit@bcf.uni-freiburg.de

Levin Sottru
Science Communicator
BrainLinks-BrainTools Cluster of Excellence
Phone: +49 (0) 761 / 203 – 67721
E-Mail: levin.sottru@brainlinks-braintools.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-02.14-en?set_language=en

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>