Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climbing Frames for Cells Influence Growth and Morphology

12.11.2014

Biophysical Research for Future Implants

With society growing older, implants are often necessary to preserve mobility and health-related quality of life. However, by far not all implantations are successful, and often lengthy and risky after-treatments are necessary, for example because the implant is not well integrated into bone.


PhD student Judith Hohmann, photo: Th. Jung

In order to make implants more reliable, their surface is roughened, so that the cells of the surrounding bone tissue grow faster into the surface. The cellular mechanisms of this growth enhancement are not yet known.

In a recently published study Professor Georg von Freymann and his PhD student Judith Hohmann, for the first time systematically showed the connections between three-dimensional surface structure and cell growth.

"If we understand how cells behave on differently structured surfaces, this could eventually lead to improved implants," the young biophysicist Hohmann explains the motivation for the research project. The work was carried out at the Physics Department of the University of Kaiserslautern within the framework of the State Research Center OPTIMAS.

To better understand the interaction of the cells, various structures were fabricated with feature sizes of a few microns. For this, Hohmann made use of 3D micro-printing that builds three-dimensional polymer structures from a liquid starting material.

The structures were then coated with titanium dioxide so that they are chemically identical to the surfaces of implants. On these structures, the young scientist let then cells grow that are very similar to those of bone tissue. Cell growth was then compared to that on unstructured surfaces.

The structures resembled micro climbing frames and were also used as such by the cells. Along the scaffolds the cells grew much faster than in the control experiments without structured surfaces for adhesion contact.

The cells had a distinct preference for certain shapes and distances of different scaffolds: A change in the spacing of posts of the climbing frame-like structures had significant influence on the growth of cells. Also the cell morphology strongly depends on their structural environment. The studies provided a first approach to better understand the growth behavior of the cells on the artificial material. Fortunately, the functionality of the cells was not affected, they still behave like bone tissue.

The results of this study may in future lead to improved implants that are overgrown quicker by the surrounding bone tissue. Von Freymann and Hohmann published their results in the internationally renowned journal Advanced Functional Materials. The editor of the journal even selected their study for the cover of the print edition.

For further information:
Influence of Direct Laser Written 3D Topographies on Proliferation and Differentiation of Osteoblast-Like Cells: Towards Improved Implant Surfaces
Judith K. Hohmann and Georg von Freymann
Advanced Functional Materials 24, 6573–6580 (2014); DOI: 10.1002/adfm.201401390

Contact:
Prof. Dr. Georg von Freymann, TU Kaiserslautern
(Phone +49 631 205 5225; georg.freymann@physik.uni-kl.de)


Weitere Informationen:

http://www.uni-kl.de

Thomas Jung | Technische Universität Kaiserslautern

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>