Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climbing Frames for Cells Influence Growth and Morphology

12.11.2014

Biophysical Research for Future Implants

With society growing older, implants are often necessary to preserve mobility and health-related quality of life. However, by far not all implantations are successful, and often lengthy and risky after-treatments are necessary, for example because the implant is not well integrated into bone.


PhD student Judith Hohmann, photo: Th. Jung

In order to make implants more reliable, their surface is roughened, so that the cells of the surrounding bone tissue grow faster into the surface. The cellular mechanisms of this growth enhancement are not yet known.

In a recently published study Professor Georg von Freymann and his PhD student Judith Hohmann, for the first time systematically showed the connections between three-dimensional surface structure and cell growth.

"If we understand how cells behave on differently structured surfaces, this could eventually lead to improved implants," the young biophysicist Hohmann explains the motivation for the research project. The work was carried out at the Physics Department of the University of Kaiserslautern within the framework of the State Research Center OPTIMAS.

To better understand the interaction of the cells, various structures were fabricated with feature sizes of a few microns. For this, Hohmann made use of 3D micro-printing that builds three-dimensional polymer structures from a liquid starting material.

The structures were then coated with titanium dioxide so that they are chemically identical to the surfaces of implants. On these structures, the young scientist let then cells grow that are very similar to those of bone tissue. Cell growth was then compared to that on unstructured surfaces.

The structures resembled micro climbing frames and were also used as such by the cells. Along the scaffolds the cells grew much faster than in the control experiments without structured surfaces for adhesion contact.

The cells had a distinct preference for certain shapes and distances of different scaffolds: A change in the spacing of posts of the climbing frame-like structures had significant influence on the growth of cells. Also the cell morphology strongly depends on their structural environment. The studies provided a first approach to better understand the growth behavior of the cells on the artificial material. Fortunately, the functionality of the cells was not affected, they still behave like bone tissue.

The results of this study may in future lead to improved implants that are overgrown quicker by the surrounding bone tissue. Von Freymann and Hohmann published their results in the internationally renowned journal Advanced Functional Materials. The editor of the journal even selected their study for the cover of the print edition.

For further information:
Influence of Direct Laser Written 3D Topographies on Proliferation and Differentiation of Osteoblast-Like Cells: Towards Improved Implant Surfaces
Judith K. Hohmann and Georg von Freymann
Advanced Functional Materials 24, 6573–6580 (2014); DOI: 10.1002/adfm.201401390

Contact:
Prof. Dr. Georg von Freymann, TU Kaiserslautern
(Phone +49 631 205 5225; georg.freymann@physik.uni-kl.de)


Weitere Informationen:

http://www.uni-kl.de

Thomas Jung | Technische Universität Kaiserslautern

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>