Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climbing Frames for Cells Influence Growth and Morphology


Biophysical Research for Future Implants

With society growing older, implants are often necessary to preserve mobility and health-related quality of life. However, by far not all implantations are successful, and often lengthy and risky after-treatments are necessary, for example because the implant is not well integrated into bone.

PhD student Judith Hohmann, photo: Th. Jung

In order to make implants more reliable, their surface is roughened, so that the cells of the surrounding bone tissue grow faster into the surface. The cellular mechanisms of this growth enhancement are not yet known.

In a recently published study Professor Georg von Freymann and his PhD student Judith Hohmann, for the first time systematically showed the connections between three-dimensional surface structure and cell growth.

"If we understand how cells behave on differently structured surfaces, this could eventually lead to improved implants," the young biophysicist Hohmann explains the motivation for the research project. The work was carried out at the Physics Department of the University of Kaiserslautern within the framework of the State Research Center OPTIMAS.

To better understand the interaction of the cells, various structures were fabricated with feature sizes of a few microns. For this, Hohmann made use of 3D micro-printing that builds three-dimensional polymer structures from a liquid starting material.

The structures were then coated with titanium dioxide so that they are chemically identical to the surfaces of implants. On these structures, the young scientist let then cells grow that are very similar to those of bone tissue. Cell growth was then compared to that on unstructured surfaces.

The structures resembled micro climbing frames and were also used as such by the cells. Along the scaffolds the cells grew much faster than in the control experiments without structured surfaces for adhesion contact.

The cells had a distinct preference for certain shapes and distances of different scaffolds: A change in the spacing of posts of the climbing frame-like structures had significant influence on the growth of cells. Also the cell morphology strongly depends on their structural environment. The studies provided a first approach to better understand the growth behavior of the cells on the artificial material. Fortunately, the functionality of the cells was not affected, they still behave like bone tissue.

The results of this study may in future lead to improved implants that are overgrown quicker by the surrounding bone tissue. Von Freymann and Hohmann published their results in the internationally renowned journal Advanced Functional Materials. The editor of the journal even selected their study for the cover of the print edition.

For further information:
Influence of Direct Laser Written 3D Topographies on Proliferation and Differentiation of Osteoblast-Like Cells: Towards Improved Implant Surfaces
Judith K. Hohmann and Georg von Freymann
Advanced Functional Materials 24, 6573–6580 (2014); DOI: 10.1002/adfm.201401390

Prof. Dr. Georg von Freymann, TU Kaiserslautern
(Phone +49 631 205 5225;

Weitere Informationen:

Thomas Jung | Technische Universität Kaiserslautern

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>