Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climbing Frames for Cells Influence Growth and Morphology


Biophysical Research for Future Implants

With society growing older, implants are often necessary to preserve mobility and health-related quality of life. However, by far not all implantations are successful, and often lengthy and risky after-treatments are necessary, for example because the implant is not well integrated into bone.

PhD student Judith Hohmann, photo: Th. Jung

In order to make implants more reliable, their surface is roughened, so that the cells of the surrounding bone tissue grow faster into the surface. The cellular mechanisms of this growth enhancement are not yet known.

In a recently published study Professor Georg von Freymann and his PhD student Judith Hohmann, for the first time systematically showed the connections between three-dimensional surface structure and cell growth.

"If we understand how cells behave on differently structured surfaces, this could eventually lead to improved implants," the young biophysicist Hohmann explains the motivation for the research project. The work was carried out at the Physics Department of the University of Kaiserslautern within the framework of the State Research Center OPTIMAS.

To better understand the interaction of the cells, various structures were fabricated with feature sizes of a few microns. For this, Hohmann made use of 3D micro-printing that builds three-dimensional polymer structures from a liquid starting material.

The structures were then coated with titanium dioxide so that they are chemically identical to the surfaces of implants. On these structures, the young scientist let then cells grow that are very similar to those of bone tissue. Cell growth was then compared to that on unstructured surfaces.

The structures resembled micro climbing frames and were also used as such by the cells. Along the scaffolds the cells grew much faster than in the control experiments without structured surfaces for adhesion contact.

The cells had a distinct preference for certain shapes and distances of different scaffolds: A change in the spacing of posts of the climbing frame-like structures had significant influence on the growth of cells. Also the cell morphology strongly depends on their structural environment. The studies provided a first approach to better understand the growth behavior of the cells on the artificial material. Fortunately, the functionality of the cells was not affected, they still behave like bone tissue.

The results of this study may in future lead to improved implants that are overgrown quicker by the surrounding bone tissue. Von Freymann and Hohmann published their results in the internationally renowned journal Advanced Functional Materials. The editor of the journal even selected their study for the cover of the print edition.

For further information:
Influence of Direct Laser Written 3D Topographies on Proliferation and Differentiation of Osteoblast-Like Cells: Towards Improved Implant Surfaces
Judith K. Hohmann and Georg von Freymann
Advanced Functional Materials 24, 6573–6580 (2014); DOI: 10.1002/adfm.201401390

Prof. Dr. Georg von Freymann, TU Kaiserslautern
(Phone +49 631 205 5225;

Weitere Informationen:

Thomas Jung | Technische Universität Kaiserslautern

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>