Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change threatens domestic bee species

06.07.2017

Global warming changes the flowering times of plants and the moment when bees hatch – sometimes with severe consequences for the bees. This was shown by a new study conducted by ecologists from the University of Würzburg.

There are around 550 different bee species in Germany. Most of them are solitary bees. They don't live in large beehives like the honeybee, but each female bee often builds multiple nests and feeds her offspring alone. Solitary bees use their short lifespan of a few weeks exclusively to reproduce and to provide food for their brood to develop into adult bees. Bees depend on the availability of pollen which they can frequently collect on specific plant species only.


The researchers studied three mason bee species. One of them was the red mason bee (Osmia bicornis).

Photo: Mariela Schenk


Reed nesting holes for solitary bees. A certain sign of nesting is seeing the ends of the reed tubes capped with mud.

Photo: Mariela Schenk

Well-timed hatching is crucial

Therefore, good timing is crucial when the insects hatch. This is particularly true in early spring when there is the risk that no plants are available to the bee if it has emerged from hibernation too early. As global warming may have a different impact on the time when different species emerge in spring, temporal mismatches may occur between bee and plant species.

What happens when a bee hatches before its food plants start to flower and it has to do without food during the first days of its life? A team of researchers from the Department of Animal Ecology and Tropical Biology of the University of Würzburg's Biocenter has looked into this question. The scientists present the results of their work in the Journal of Animal Biology.

Temporal mismatches harm bees

The Collaborative Research Center "Insect Timing" has investigated three different species of spring-emerging bees. The findings of their study are alarming: "Already a minor temporal mismatch of three or six days is enough to harm the bees," Mariela Schenk, the author of the study, explains.

For the purpose of the study, the researchers set up 36 large flight cages. This controlled environment allowed the scientists to make the bees hatch either simultaneously with the flowering of the plants in the cage or three and six days previously. Subsequently, they monitored the bees over their entire lifespan. The scientists recorded the daily activity of the bees and also how many nests and brood cells the bees produced.

What they found was that not all individuals survived three or six days without food plants.
And the ones that made it exhibited less activity and reduced reproductive output.

Negative consequences despite change in behaviour

These negative consequences occurred even though the insects had adopted several behavioural strategies to mitigate the impact. One of the three bee species, for example, tried to reduce the effort of providing for the young by producing fewer female and more male offspring. Male offspring requires less food than the much bigger young females. "But this approach could result in a decline in population," Mariela Schenk says.

Another bee species tried to save time in the production of offspring by distributing the same number of brood cells among fewer nests. This strategy, however, increases the risk that the entire brood falls prey to predators and parasites.

A further strategy one bee species adopted was to increase its activity in the second half of its life. But this method, too, was not sufficient to prevent negative consequences. Ecologist Mariela Schenk explains: "Although we found that the bee species we investigated developed species-specific strategies to mitigate the impact of temporal mismatches, the insects still suffered severe fitness loss."

Reduced plant pollination

Dr Andrea Holzschuh, who is also an ecologist and in charge of the study, adds: "Not only can such developments further exacerbate the decline of solitary bees, they can also reduce plant pollination in general." To make matters worse, the negative consequences of temporal mismatching of bees and plants seems to be particularly pronounced in very warm springs.

Mariela Schenk, Jochen Krauss, Andrea Holzschuh (2017) "Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees", Journal of Animal Ecology. doi: 10.1111/1365-2656.12694

Contact

Mariela Schenk, Department of Animal Ecology and Tropical Biology,
T: +49 931 31-89415; e-mail: mariela.schenk@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>