Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning up? Not without helpers

20.10.2017

Freiburg scientists explain assembly and transport function of ‘old‘ calcium pumps by ‘new‘ partner proteins

Calcium-ATPases convey calcium ions (Ca2+) from the cytoplasm to the extracellular space via active transport (using ATP as an energy source), and thus fundamentally contribute to the control of a wide variety of Ca2+-dependent processes in virtually any type of cell in humans and animals.


Molecular structure of the Ca2+-pumps in the plasma membrane, projected onto a neuronal culture (fluorescence in blue; a portion of neurons where expression of the auxiliary proteins Neuroplastin and Basigin has been knocked-down underwent cell death and are colored in red).

Source: Fakler Lab

Scientists in the group of Dr. Uwe Schulte and Prof. Dr. Bernd Fakler at the Institute of Physiology at the University of Freiburg have successfully unraveled the molecular appearance of this well-known ‘ion pump’: Different from classical textbook knowledge, Ca2+-pumps of the plasma membrane (PMCAs) are identified as protein complexes that are assembled from two ATP-hydrolyzing transporter proteins and two as yet unknown subunits, Neuroplastin and Basigin.

These two novel protein subunits are essential for stability and trafficking of the PMCA complexes to the plasma membrane and control the PMCA-mediated Ca2+-transport. The researchers have presented their work in the current issue of the scientific journal ‘Neuron’.

A variety of cellular processes such as release of transmitters and hormones, regulation of enzymatic activities and excitability, contraction or cell motility are controlled by intracellular Ca2+. These processes are switched on by Ca2+-influx, mostly through Ca2+-permeable ion channels, and they are switched off by Ca2+-ATPases in the plasma membrane, the PMCAs.

The Fakler group has now shown that this switch-off by PMCAs may only take a few ten milliseconds, in contrast to the seconds-lasting periods assumed previously. As the mechanism behind this unexpectedly high efficiency in Ca2+-transport activity, the researchers identified co-assembly of the ATPase subunits with the auxiliary proteins Neuroplastin and Basigin which promote effective integration of the PMCA complexes into the plasma membrane. Deletion of both Neuroplastin and Basigin in CNS neurons leads to severe disturbance of neuron signal transduction and ultimately to cell death.

Even before their identification as auxiliary subunits of PMCA complexes, Neuroplastin and Basigin have not been ‘unknowns’. In fact, investigations by several groups predominantly on knock-out animals and tissues demonstrated fundamental involvement of both proteins in quite a variety of different cellular processes ranging from formation, operation and plasticity of synapses in central neurons, to spermatogenesis and fertilization, or infection of erythrocytes by plasmodium, the pathogen of malaria.

So far, however, the molecular mechanisms underlying these processes have remained unresolved. Based on the newly established results by the Freiburg scientists, it appears reasonable to assume that all the aforementioned processes share a common mechanism – the PMCA-mediated control of intracellular Ca2+-signaling.

Bernd Fakler is the director of Department II of the Institute of Physiology and area coordinator of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Original publication:
Schmidt N, Kollewe A, Constantin CE, Henrich S, Ritzau-Jost A, Bildl W, Saalbach A, Hallermann S, Kulik A, Fakler B, Schulte U. Neuroplastin and Basigin are essential auxiliary subunits of plasma membrane Ca2+-ATPases and key regulators of Ca2+ clearance. Neuron (online on Oct 19th), 2017.
https://doi.org/10.1016/j.neuron.2017.09.038


Image caption
Molecular structure of the Ca2+-pumps in the plasma membrane, projected onto a neuronal culture (fluorescence in blue; a portion of neurons where expression of the auxiliary proteins Neuroplastin and Basigin has been knocked-down underwent cell death and are colored in red).

Contact:
Prof. Dr. Bernd Fakler
Institute of Physiology, Faculty of Medicine / BIOSS Centre for Biological Signalling Studies
University of Freiburg
Tel.: 0761/203-5175
E-Mail: bernd.fakler@physiologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/cleaning-up-not-without-helpers

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>