Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ciliates and their bacterial partners - A global partnership

13.07.2017

Ciliates, just like humans, are colonized by a vast diversity of bacteria. Some ciliates and their bacterial symbionts have become friends for life, as Max Planck researchers and their colleagues demonstrated by comparing a group of these single-celled ciliates and their bacterial partners from the Caribbean and the Mediterranean Seas. They have published their findings in the Proceedings of the Royal Society B. The bacteria provide their ciliate hosts with nutrition by oxidizing sulfur. Surprisingly, they found that this partnership originated once, from a single ciliate ancestor and a single bacterial ancestor, although a whole ocean separates the sampling sites.

Graceful Swimmers


Several Kentrophoros ciliates from the Mediterranean Sea under the microscope. The sulfur in the bacteria reflects the light and makes them appear white.

Oliver Jäckle, MPI MM


A transverse cut through a Kentrophoros ciliate stained with a colored dye, showing how the ciliate’s cell body folds around the thousands of rod-shaped bacteria to increase surface area.

MPIMM

Ciliates are minute, single-celled organisms with several nuclei, and are abundant in freshwater, the oceans and soil. The name “ciliate” comes from 'cilia', tiny hair-like structures, which cover these organisms and are used for movement and to transport food to the mouth-shaped opening. A well-known ciliate is the slipper animalcule Paramecium.

Under the microscope, the elegance and beauty of ciliates becomes obvious. Some species grow to be quite large and are even visible to the naked eye as small dots in a drop of water.

In their study, Brandon Seah from the Max Planck Institute for Marine Microbiology (MPIMM) and colleagues describe the partnership between ciliates of the genus Kentrophoros, which have lost their mouth opening and the symbiotic sulfur oxidizing bacteria that they depend on. This type of symbiosis is termed mutualism, i.e. both partners depend on each other.

Chemosynthesis and Symbiosis as a Strategy

Many organisms are known which use sulfur-oxidizing bacteria as a source of energy. The first were found by pure chance near the hydrothermal vents in the deep sea in the 1970s. The deep-sea mussel Bathymodiolus and the tubeworm Riftia are two examples. Until now it was not known who the symbionts of Kentrophoros are: are they related to other symbionts, or are they entirely new species of bacteria?

In their study, the researchers compared Kentrophoros species from the Caribbean and the Mediterranean Seas. Although the overall appearance (phenotype and morphology) varied, DNA sequence analysis showed that the ciliates all originated from a single common ancestor. This was also the case for the bacteria, which all belonged to one group of close relatives from a lineage that is new to science. This means that at some point millions of years ago, the first Kentrophoros and the ancestor of these bacteria formed a partnership that has endured through the years, and their descendants are now found around the world.

“The bacterial symbionts grow only on one side of the ciliate’s body. Some ciliates have special folds in order to increase the area for optimal growth. These ciliates carry their personal vegetable patch that they harvest by phagocytosis,” explains Brandon Seah, PhD student at the MPIMM.

Prof. Dr. Nicole Dubilier, Director at the MPIMM says:“ One of the surprising results of our study was that the partnership between the ciliates and their symbionts has been highly stable and specific over a very long evolutionary time period, perhaps tens to hundreds of millions of years. We assumed that because the symbionts sit on the outside of their hosts and could be easily lost when the ciliates move through water or sand, that these symbioses might not be as specific as ones in which the symbionts live inside their hosts. But it turns out that the physical location of partners is not necessarily related to their intimacy.”

The researchers found 17 species of Kentrophoros that are all related to each other, that share the same basic body plan even though each has their own unique features.

Perspectives

The next step on the agenda is genome sequencing of the bacterial symbionts and their hosts. Also, cultivation of the ciliates and their symbionts would open the door for future studies on what contributions each partner in this symbiotic team brings to their relationship.

Original Publication
Seah BKB, Schwaha T, Volland J-M, Huettel B, Dubilier N, Gruber-Vodicka HR. 2017 Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis. Proc. R. Soc. B 20170764.
http://dx.doi.org/10.1098/rspb.2017.0764

Institutes
- Max Planck Institute for Marine Microbiology, Bremen
- Department of Integrative Zoology, and Department of Limnology and Bio-Oceanography, Vienna, Austria
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- MARUM, Center for Marine Environmental Sciences, Bremen, Germany

For more information

Brandon Kwee Boon Seah
Dept. of Symbiosis, Max Planck Institute for Marine Microbiology
+49 421 2028904, kbseah@mpi-bremen.de

Prof. Dr. Nicole Dubilier
Dept. of Symbiosis, Max Planck Institute for Marine Microbiology
+49 421 2028932, ndubilie@mpi-bremen.de

or contact the press office

Dr. Manfred Schloesser mschloes@mpi-bremen.de +49 421 2028704
Dr. Fanni Aspetsberger faspetsb@mpi-bremen.de +49 421 2028947

Box Ciliates

Ciliates are single-celled organisms with a size of up to several millimeters.
The name Kentrophoros means “spine carrier”, as researchers in the 1920s misinterpreted the bacteria as spines. Kentrophoros are found around the world including the Mediterranean, the Caribbean and the Pacific. They can reproduce asexually.
Ciliates in general have several cell nuclei of two different types. One type is small and carries the genetic information that is exchanged during sexual reproduction. The others control the cell’s functions and its outer appearance via gene expression.

Weitere Informationen:

Kentrophoros the Movie –Video clips of live ciliates under the microscope. Source: Brandon Seah

https://vimeo.com/89605962

http://www.mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>