Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes: the importance of keeping the balance

17.02.2016

The genetic material of cancer cells is unstable. For example, the number of chromosomes, which are the individual elements of packed DNA, is changed in so called aneuploidies. This imbalance in chromosomes, which often occurs early in tumor development, leads to cell stress and promotes disease. How this can happen is now shown by the discovery of a research team led by Zuzana Storchová at the Max Planck Institute of Biochemistry in Martinsried, reported in a groundbreaking study published in Nature Communications. An imbalance in an enzyme called MCM2-7 that is essential for DNA replication is likely to be responsible for this escalating genomic instability.

Before every cell division, the hereditary information, that is the chromosomes, are duplicated and distributed to the daughter cells so that each cell again carries its species-specific number of chromosomes, which is 46 in humans.


Many cancer cells are aneuploid. It means, that they have more or less chromosomes than usual. The changed number of chromosomes (pink) leads to a higher rate of DNA-damage.

V. Passerini © MPI of Biochemistry

„Mistakes can occur at any time during the process of cell division“, explains Zuzana Storchová, the head of the Genome Stability research group. „The chromosomes can be divided unequally and in this way one human cell carries 47 chromosomes while the other carries 45 chromosomes“.

It is known that chromosome imbalance, called aneuploidy, often occurs early in the development of cancer. Aneuploidy probably even appears before the much-feared gene mutations, which are thought to be the cause of cancer. „We wanted to know whether a change in the number of chromosomes directly contributes to gene mutations”, explains Storchová.

To answer this question, the researchers took advantage of a method that has until now been successfully used by only a small number of research groups worldwide: chromosome transfer. In a first step, single chromosomes are isolated and then transferred to recipient cells. The specific effects of aneuploidy can be deciphered in detail by directly comparing with identical cells that do not carry the extra chromosome.

To get a detailed understanding of the changes in the genome of aneuploid cells, the researchers teamed up with the group of Batsheva Kerem from the University of Jerusalem and the group of Wigard Kloosterman from the University Medical Center in Utrecht. In fact, Storchova’s team and their collaborators observed that aneuploid cells exhibited a clearly elevated rate of DNA damage as well as an enhanced level of DNA rearrangements.

„We see that an imbalance in chromosome numbers has serious consequences, because the chromosomes contain genes, which are the construction manuals for all the different proteins inside a cell. Proteins are the executors of a vast array of important cellular functions and operate like little molecular machines“, explains Verena Passerini from Storchova‘s team and the first author of the study.

„If there are too many or too few chromosomes, inside a cell, then there will be a corresponding increase or decrease in the amount of proteins that are made. This probably causes cell stress and leads to cellular damage“. In this way, the whole cellular system loses its balance.

The researchers could also identify a responsible factor: The MCM2-7 protein complex that is essential for DNA replication during cell division. In the aneuploid cells there was less MCM2-7 present than normal. The reduced levels of MCM2-7 impair DNA replication, which in turn leads to chromosomal rearrangements and mutations. These defects could be partially corrected by increasing the levels of MCM2-7.

„We could now show for the first time what profound effects aneuploidy can have on important cellular functions: An alteration in chromosome number causes stress during DNA replication, which leads to genetic instability“, summarizes Storchová.

It is now clear that certain defects that appear at the beginning of tumor development, such as aneuploidy, promote further damage in their wake. „It has been very difficult to understand the early stages of tumor development", says Storchová. „Our aneuploid cells represent a new model system for processes that drive cancer development."

Original publication:
V. Passerini, E. Ozeri-Galai, M. S. de Pagter, N. Donnelly, S. Schmalbrock, W. P. Kloosterman, B. Kerem, Z. Storchová: The presence of extra chromosomes leads to genomic instability, Nature Communications, February 2016
DOI: 10.1038/NCOMMS10754

Contact:
Dr. Zuzana Storchová
Maintenance of Genome Stability
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: storchov@biochem.mpg.de
www.biochem.mpg.de/storchova

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/storchova - Website of the Research Group "Maintenance of Genome Stability" (Zuzana Storchova)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>