Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes: the importance of keeping the balance

17.02.2016

The genetic material of cancer cells is unstable. For example, the number of chromosomes, which are the individual elements of packed DNA, is changed in so called aneuploidies. This imbalance in chromosomes, which often occurs early in tumor development, leads to cell stress and promotes disease. How this can happen is now shown by the discovery of a research team led by Zuzana Storchová at the Max Planck Institute of Biochemistry in Martinsried, reported in a groundbreaking study published in Nature Communications. An imbalance in an enzyme called MCM2-7 that is essential for DNA replication is likely to be responsible for this escalating genomic instability.

Before every cell division, the hereditary information, that is the chromosomes, are duplicated and distributed to the daughter cells so that each cell again carries its species-specific number of chromosomes, which is 46 in humans.


Many cancer cells are aneuploid. It means, that they have more or less chromosomes than usual. The changed number of chromosomes (pink) leads to a higher rate of DNA-damage.

V. Passerini © MPI of Biochemistry

„Mistakes can occur at any time during the process of cell division“, explains Zuzana Storchová, the head of the Genome Stability research group. „The chromosomes can be divided unequally and in this way one human cell carries 47 chromosomes while the other carries 45 chromosomes“.

It is known that chromosome imbalance, called aneuploidy, often occurs early in the development of cancer. Aneuploidy probably even appears before the much-feared gene mutations, which are thought to be the cause of cancer. „We wanted to know whether a change in the number of chromosomes directly contributes to gene mutations”, explains Storchová.

To answer this question, the researchers took advantage of a method that has until now been successfully used by only a small number of research groups worldwide: chromosome transfer. In a first step, single chromosomes are isolated and then transferred to recipient cells. The specific effects of aneuploidy can be deciphered in detail by directly comparing with identical cells that do not carry the extra chromosome.

To get a detailed understanding of the changes in the genome of aneuploid cells, the researchers teamed up with the group of Batsheva Kerem from the University of Jerusalem and the group of Wigard Kloosterman from the University Medical Center in Utrecht. In fact, Storchova’s team and their collaborators observed that aneuploid cells exhibited a clearly elevated rate of DNA damage as well as an enhanced level of DNA rearrangements.

„We see that an imbalance in chromosome numbers has serious consequences, because the chromosomes contain genes, which are the construction manuals for all the different proteins inside a cell. Proteins are the executors of a vast array of important cellular functions and operate like little molecular machines“, explains Verena Passerini from Storchova‘s team and the first author of the study.

„If there are too many or too few chromosomes, inside a cell, then there will be a corresponding increase or decrease in the amount of proteins that are made. This probably causes cell stress and leads to cellular damage“. In this way, the whole cellular system loses its balance.

The researchers could also identify a responsible factor: The MCM2-7 protein complex that is essential for DNA replication during cell division. In the aneuploid cells there was less MCM2-7 present than normal. The reduced levels of MCM2-7 impair DNA replication, which in turn leads to chromosomal rearrangements and mutations. These defects could be partially corrected by increasing the levels of MCM2-7.

„We could now show for the first time what profound effects aneuploidy can have on important cellular functions: An alteration in chromosome number causes stress during DNA replication, which leads to genetic instability“, summarizes Storchová.

It is now clear that certain defects that appear at the beginning of tumor development, such as aneuploidy, promote further damage in their wake. „It has been very difficult to understand the early stages of tumor development", says Storchová. „Our aneuploid cells represent a new model system for processes that drive cancer development."

Original publication:
V. Passerini, E. Ozeri-Galai, M. S. de Pagter, N. Donnelly, S. Schmalbrock, W. P. Kloosterman, B. Kerem, Z. Storchová: The presence of extra chromosomes leads to genomic instability, Nature Communications, February 2016
DOI: 10.1038/NCOMMS10754

Contact:
Dr. Zuzana Storchová
Maintenance of Genome Stability
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: storchov@biochem.mpg.de
www.biochem.mpg.de/storchova

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/storchova - Website of the Research Group "Maintenance of Genome Stability" (Zuzana Storchova)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>