Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes: the importance of keeping the balance

17.02.2016

The genetic material of cancer cells is unstable. For example, the number of chromosomes, which are the individual elements of packed DNA, is changed in so called aneuploidies. This imbalance in chromosomes, which often occurs early in tumor development, leads to cell stress and promotes disease. How this can happen is now shown by the discovery of a research team led by Zuzana Storchová at the Max Planck Institute of Biochemistry in Martinsried, reported in a groundbreaking study published in Nature Communications. An imbalance in an enzyme called MCM2-7 that is essential for DNA replication is likely to be responsible for this escalating genomic instability.

Before every cell division, the hereditary information, that is the chromosomes, are duplicated and distributed to the daughter cells so that each cell again carries its species-specific number of chromosomes, which is 46 in humans.


Many cancer cells are aneuploid. It means, that they have more or less chromosomes than usual. The changed number of chromosomes (pink) leads to a higher rate of DNA-damage.

V. Passerini © MPI of Biochemistry

„Mistakes can occur at any time during the process of cell division“, explains Zuzana Storchová, the head of the Genome Stability research group. „The chromosomes can be divided unequally and in this way one human cell carries 47 chromosomes while the other carries 45 chromosomes“.

It is known that chromosome imbalance, called aneuploidy, often occurs early in the development of cancer. Aneuploidy probably even appears before the much-feared gene mutations, which are thought to be the cause of cancer. „We wanted to know whether a change in the number of chromosomes directly contributes to gene mutations”, explains Storchová.

To answer this question, the researchers took advantage of a method that has until now been successfully used by only a small number of research groups worldwide: chromosome transfer. In a first step, single chromosomes are isolated and then transferred to recipient cells. The specific effects of aneuploidy can be deciphered in detail by directly comparing with identical cells that do not carry the extra chromosome.

To get a detailed understanding of the changes in the genome of aneuploid cells, the researchers teamed up with the group of Batsheva Kerem from the University of Jerusalem and the group of Wigard Kloosterman from the University Medical Center in Utrecht. In fact, Storchova’s team and their collaborators observed that aneuploid cells exhibited a clearly elevated rate of DNA damage as well as an enhanced level of DNA rearrangements.

„We see that an imbalance in chromosome numbers has serious consequences, because the chromosomes contain genes, which are the construction manuals for all the different proteins inside a cell. Proteins are the executors of a vast array of important cellular functions and operate like little molecular machines“, explains Verena Passerini from Storchova‘s team and the first author of the study.

„If there are too many or too few chromosomes, inside a cell, then there will be a corresponding increase or decrease in the amount of proteins that are made. This probably causes cell stress and leads to cellular damage“. In this way, the whole cellular system loses its balance.

The researchers could also identify a responsible factor: The MCM2-7 protein complex that is essential for DNA replication during cell division. In the aneuploid cells there was less MCM2-7 present than normal. The reduced levels of MCM2-7 impair DNA replication, which in turn leads to chromosomal rearrangements and mutations. These defects could be partially corrected by increasing the levels of MCM2-7.

„We could now show for the first time what profound effects aneuploidy can have on important cellular functions: An alteration in chromosome number causes stress during DNA replication, which leads to genetic instability“, summarizes Storchová.

It is now clear that certain defects that appear at the beginning of tumor development, such as aneuploidy, promote further damage in their wake. „It has been very difficult to understand the early stages of tumor development", says Storchová. „Our aneuploid cells represent a new model system for processes that drive cancer development."

Original publication:
V. Passerini, E. Ozeri-Galai, M. S. de Pagter, N. Donnelly, S. Schmalbrock, W. P. Kloosterman, B. Kerem, Z. Storchová: The presence of extra chromosomes leads to genomic instability, Nature Communications, February 2016
DOI: 10.1038/NCOMMS10754

Contact:
Dr. Zuzana Storchová
Maintenance of Genome Stability
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: storchov@biochem.mpg.de
www.biochem.mpg.de/storchova

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/storchova - Website of the Research Group "Maintenance of Genome Stability" (Zuzana Storchova)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>