Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes: the importance of keeping the balance

17.02.2016

The genetic material of cancer cells is unstable. For example, the number of chromosomes, which are the individual elements of packed DNA, is changed in so called aneuploidies. This imbalance in chromosomes, which often occurs early in tumor development, leads to cell stress and promotes disease. How this can happen is now shown by the discovery of a research team led by Zuzana Storchová at the Max Planck Institute of Biochemistry in Martinsried, reported in a groundbreaking study published in Nature Communications. An imbalance in an enzyme called MCM2-7 that is essential for DNA replication is likely to be responsible for this escalating genomic instability.

Before every cell division, the hereditary information, that is the chromosomes, are duplicated and distributed to the daughter cells so that each cell again carries its species-specific number of chromosomes, which is 46 in humans.


Many cancer cells are aneuploid. It means, that they have more or less chromosomes than usual. The changed number of chromosomes (pink) leads to a higher rate of DNA-damage.

V. Passerini © MPI of Biochemistry

„Mistakes can occur at any time during the process of cell division“, explains Zuzana Storchová, the head of the Genome Stability research group. „The chromosomes can be divided unequally and in this way one human cell carries 47 chromosomes while the other carries 45 chromosomes“.

It is known that chromosome imbalance, called aneuploidy, often occurs early in the development of cancer. Aneuploidy probably even appears before the much-feared gene mutations, which are thought to be the cause of cancer. „We wanted to know whether a change in the number of chromosomes directly contributes to gene mutations”, explains Storchová.

To answer this question, the researchers took advantage of a method that has until now been successfully used by only a small number of research groups worldwide: chromosome transfer. In a first step, single chromosomes are isolated and then transferred to recipient cells. The specific effects of aneuploidy can be deciphered in detail by directly comparing with identical cells that do not carry the extra chromosome.

To get a detailed understanding of the changes in the genome of aneuploid cells, the researchers teamed up with the group of Batsheva Kerem from the University of Jerusalem and the group of Wigard Kloosterman from the University Medical Center in Utrecht. In fact, Storchova’s team and their collaborators observed that aneuploid cells exhibited a clearly elevated rate of DNA damage as well as an enhanced level of DNA rearrangements.

„We see that an imbalance in chromosome numbers has serious consequences, because the chromosomes contain genes, which are the construction manuals for all the different proteins inside a cell. Proteins are the executors of a vast array of important cellular functions and operate like little molecular machines“, explains Verena Passerini from Storchova‘s team and the first author of the study.

„If there are too many or too few chromosomes, inside a cell, then there will be a corresponding increase or decrease in the amount of proteins that are made. This probably causes cell stress and leads to cellular damage“. In this way, the whole cellular system loses its balance.

The researchers could also identify a responsible factor: The MCM2-7 protein complex that is essential for DNA replication during cell division. In the aneuploid cells there was less MCM2-7 present than normal. The reduced levels of MCM2-7 impair DNA replication, which in turn leads to chromosomal rearrangements and mutations. These defects could be partially corrected by increasing the levels of MCM2-7.

„We could now show for the first time what profound effects aneuploidy can have on important cellular functions: An alteration in chromosome number causes stress during DNA replication, which leads to genetic instability“, summarizes Storchová.

It is now clear that certain defects that appear at the beginning of tumor development, such as aneuploidy, promote further damage in their wake. „It has been very difficult to understand the early stages of tumor development", says Storchová. „Our aneuploid cells represent a new model system for processes that drive cancer development."

Original publication:
V. Passerini, E. Ozeri-Galai, M. S. de Pagter, N. Donnelly, S. Schmalbrock, W. P. Kloosterman, B. Kerem, Z. Storchová: The presence of extra chromosomes leads to genomic instability, Nature Communications, February 2016
DOI: 10.1038/NCOMMS10754

Contact:
Dr. Zuzana Storchová
Maintenance of Genome Stability
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: storchov@biochem.mpg.de
www.biochem.mpg.de/storchova

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/storchova - Website of the Research Group "Maintenance of Genome Stability" (Zuzana Storchova)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>