Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol an Important Piece of the Puzzle for Fat-Burning

24.11.2016

Gut bacteria play a little-understood role in the body’s energy balance, which is influenced by diet. However, the crucial nutritional components are unknown. A team at the Technical University of Munich (TUM) was able to demonstrate for the very first time that mice without gastrointestinal microbiota grow obese when fed with dietary fat from plant sources, but not from animal sources. One of the important findings of the study is that cholesterol from the animal dietary fat plays a crucial role in what goes on in the intestines.

Obesity, diabetes, and related illnesses are among the most widespread health problems in Western societies, and an increasing number of people are also suffering from them in emerging economies. According to a study published in the specialist journal The Lancet in spring, more than 600 million people around the world are now obese. 




In mice with a normal gut flora, the microbiota are involved in cholesterol metabolism, thereby assisting with the efficient utilization of the animal fats.

Photo: Fotolia/ norman blue

Quelle: TUM

Besides the well-established fact that obesity is a result of an imbalance between calorie intake and energy consumption, it has been known for a long time that the colonization of the intestines with bacteria (gastrointestinal microbiota) also has an effect on the energy metabolism. More recent studies have shown how changes in the intestinal flora due to differences in diet have an impact on the energy metabolism, thereby facilitating obesity and diabetes. 



Therefore, fats and their influence on the gut flora were compared for a new study that has been published in Molecular Metabolism. For this study, germ-free mice that did not host any microbiota in their intestines were fed a high-fat diet for four weeks, which was either made using lard or palm oil. As a control, the same feed was given to mice with a normal gut flora.

A diet with a high quantity of animal fat does not necessarily lead to obesity

The findings led to three crucial conclusions: The first observation was that the germ-free mice which were fed a lot of animal fat (lard) did not gain body fat. At the same time, a different group which received a diet enriched with fats from plant sources (palm oil) fully developed diet-induced obesity. 

On the other hand, the control groups with a normal gut flora became obese regardless of whether they were fed lard or palm oil. Hence, it was the type of dietary fat alone which made the crucial difference for the germ-free mice: Diet-induced obesity only occurred with fats from plant sources, not from animal sources.

Impaired fat digestion results in a modified metabolism

“The feed with high levels of lard stimulated the metabolism in the body of the germ-free mice,” Professor Martin Klingenspor from the Chair for Molecular Nutritional Medicine at the Else Kröner-Fresenius Center for Nutritional Medicine (EKFZ) at TUM explained, presenting the second, central finding. “What this means is that a large percentage of the nutritional energy is combusted in metabolism,” said Klingenspor.

Hence, the basal metabolic rate was increased accordingly in the germ-free mice.

Furthermore, animal fat is harder to absorb and process: “Because they were less able to utilize the feed with the lard, the germ-free mice modified their metabolism to use more carbohydrates because dietary fat was only available in limited amounts,” Klingenspor concluded from the findings of the study.

Microbiota influences metabolism of cholesterol

The two types of dietary fat used in the study differ fundamentally: Palm oil is practically free from cholesterol, while lard is rich in cholesterol. Because it has been linked to an increased risk of heart attack, cholesterol has a negative connotation. But despite this bad reputation, cholesterol, which is a sterol, is also essential for life, because it is a vital component of cell membranes and a precursor to steroid hormones and bile acids. 

The plant-based fats fed to the mice in this current study contain phytosterols such as sitosterol, which inhibit the absorption of cholesterol in the intestine.

On the other hand, the supply and availability of cholesterol in animal fats is greatly increased. Could the cholesterol in lard therefore lower the fat storage capacity and increase the basal metabolic rate in the germ-free mice?  



The accompanying analysis conducted on the metabolites (intermediate products created during metabolism) for this purpose and on the corresponding metabolic paths in the intestines of the mice yielded unexpected results: Steroids, steroid hormones, and bile acids, which are all chemical derivatives of cholesterol, showed noticeable changes which were linked to the intake of the lard-containing feed.

The steroid hormone estradiol increases energy consumption

Higher concentrations of steroid hormones could explain the increased basal metabolic rate: The level of estradiol was increased, which is a steroid hormone that plays a vital role in weight loss, as it boosts energy consumption. At the same time, it also plays a role in the bile acid metabolism, resulting in less fat being stored. A reduction in bile acids in the intestines was in fact measurable. 



These changes in the cholesterol and its metabolic products can be explained by the absence of the microbiota. This is because in mice with a normal gut flora, the microbiota are involved in cholesterol metabolism, thereby assisting with the efficient utilization of the animal fats. This, however, leads to obesity.



Therefore, the interdisciplinary team led by Professor Klingenspor, Professor Dirk Haller from the Chair for Nutrition and Immunology, Dr Tom Clavel as the head of the junior research group “Intestinal Microbiome” at ZIEL -Institute for Food and Health, Professor Hannelore Daniel from the Chair for Nutritional Physiology, Professor Karl-Heinz Engel from the Chair for General Food Technology, and Professor Philippe Schmitt-Kopplin from the Chair of Analytical Food Chemistry concluded the study with an investigation on what happens in the gastrointestinal flora and how this influences the metabolism in conjunction with the type of diet.

Gut flora regulates food-host interaction

This led the scientists to their third conclusion: In the test groups with a normal gut flora, a comparison of the palm oil group with the lard feed group showed subtle differences in their bacterial composition. In the mice that were fed with lard, the abundance of specific bacterial strains was associated with changes in bile acid levels in the gut. One of these strains is actually known to metabolize cholesterol. Hence, diet-induced changes of the gut microbiota lead to modified sterol and bile acid metabolism. These cholesterol metabolites impact on fat resorption and energy expenditure and play a role in determining whether diet-induced obesity develops — or not.

Publication:
Raphaela Kübeck, Catalina Bonet-Ripoll, Christina Hoffmann, Alesia Walker, Veronika Maria Müller, Valentina Luise Schüppel, Ilias Lagkouvardos, Birgit Scholz, Karl-Heinz Engel, Hannelore Daniel, Philippe Schmitt-Kopplin, Dirk Haller, Thomas Clavel, Martin Klingenspor: Dietary fat and gut microbiota inter-actions determine diet-induced obesity in mice, Molecular Metabolism 10/2016. 

DOI: 10.1016/j.molmet.2016.10.001

Contact:
Prof. Dr. Martin Klingenspor

Technical University of Munich

Else Kröner-Fresenius Center for Nutritional Medicine

Chair for Molecular Nutritional Medicine 

Phone: +49 8161 71 2386

E-Mail: mk@tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/detail/article/33567/

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>