Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlamydia: How bacteria take over control

28.03.2017

To survive in human cells, chlamydiae have a lot of tricks in store. Researchers of the University of Würzburg have now discovered that the bacterial pathogens also manipulate the cells' energy suppliers in the process.

When Chlamydia trachomatis infects a human cell, it faces a huge challenge: It must prevent the cell from triggering programmed cell death to prevent the bacteria from replicating and spreading throughout the body.


Zwei Zellen, links nach einer Infektion mit Chlamydia-Bakterien, rechts ohne. Obwohl beide Zellen mit einer Substanz behandelt wurden, die das mitochondriale Netzwerk zerstört, bleibt das Netzwerk in der infizierten Zelle intakt. (Abbildung: Suvagata Roy Chowdhury)

Since numerous metabolic processes are either missing or fragmented in the pathogen, it is reliant on the host cell to supply the vital nutrients on a permanent basis.

Research projects worldwide focus on how the bacteria manage to keep the cell alive and working for it. Scientists from the University of Würzburg have now uncovered a new detail of these processes.

They identified a mechanism with which Chlamydia trachomatis influences the mitochondria, the cells' power plants, thereby preventing the cells from committing suicide. In the scientific journal Journal of Cell Biology, the scientists present the results of their work.

The role of mitochondria

The study was led by Professor Thomas Rudel, who holds the Chair of Microbiology at the University of Würzburg. Already three years ago, Rudel and his team showed that chlamydiae disable the tumour suppressor protein p53 in infected cells and initiate a process which repairs DNA damages resulting from chlamydia infection. By blocking p53, the bacteria prevent the cell from knocking itself out in the worst case, thereby winning time for replication.

In their new study, the microbiologists took a closer look at the mitochondria. "Mitochondria play a crucial role in energy supply and programmed cell death," Thomas Rudel explains. He sees strong evidence that changes in their architecture and dynamics are closely related to the cells' general metabolic processes.

Focus on small RNA molecules

What impact does a chlamydia infection have on mitochondria? To answer this question, Rudel's team scrutinized another actor in the goings-on inside cells: the so-called miRNAs or microRNAs. These small RNA molecules control vital processes inside cells by regulating complex networks of genes.

High-throughput sequencing allowed Rudel and his team to study in depth how a chlamydia infection impacts the miRNA expression of the infected cell. The most striking finding is a greatly increased production of the miR-30c-5p microRNA. A high concentration of these tiny RNA molecules is beneficial for the bacteria: "They cause the tumour suppressor protein to be downregulated permanently," Thomas Rudel explains.

In return, blocking miR-30c causes the chlamydia trouble, because the cell increases its production of Drp1, a protein that fragments the mitochondria in cells under stress. As its concentration inside cells increases, so does the stress-related mitochondrial division rate while the infected cell's chances of surviving the bacterial attack improve. This is because chlamydial growth is inhibited significantly by the fragmented mitochondria that supply less energy and starve the pathogens.

Chlamydia: Resourceful invaders

Bacteria of the strain Chlamydia trachomatis are responsible for a number of serious diseases in humans. Chlamydia infections are the most frequent sexually transmitted diseases worldwide. Up to ten percent of the population worldwide are estimated to be infected with the bacteria depending on the age group.

Untreated, chlamydia infection can cause fallopian tubes blockage in women which can result in tubal pregnancy or infertility. Newer findings even suggest that chlamydia infections promote ovarian cancer. Men can become infertile after an infection.

Another consequence of chlamydia infection occurs especially in tropical countries: The bacteria infect the eyes and may cause blindness. It is estimated that around 150 million people are affected by the disease. Other strains may trigger pneumonia and are suspected to cause arteriosclerosis and Alzheimer's.

Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. Suvagata Roy Chowdhury, Anastasija Reimer, Malvika Sharan, Vera Kozjak Pavlovic, Ana Eulalio, Bhupesh K. Prusty, Martin Fraunholz, Karthika Karunakaran, and Thomas Rudel The Journal of Cell Biology. https://doi.org/10.1083/jcb.201608063

Contact

Prof. Dr. Thomas Rudel, Department of Microbiology, T +49 931 31-84401, Thomas.Rudel@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>