Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemo-boosting drug discovered for leukemia

01.09.2017

Drugs developed to treat heart and blood vessel problems could be used in combination with chemotherapy to treat an aggressive form of adult leukemia

Drugs developed to treat heart and blood vessel problems could be used in combination with chemotherapy to treat an aggressive form of adult leukemia, new research led by the Francis Crick Institute reveals.


AML cells reduce oxygen levels, causing increased NO production, which causes blood vessels to leak. Blocking NO restores leakiness and boosts the number of stem cells.

Credit: Diana Passaro

In a study published in Cancer Cell, researchers at the Francis Crick Institute, King's College London and Barts Cancer Institute discovered that acute myeloid leukemia (AML) - the most common acute leukemia affecting adults - causes bone marrow to 'leak' blood, preventing chemotherapy from being delivered properly. Drugs that reversed bone marrow leakiness boosted the effect of chemotherapy in mice and human tissue, providing a possible new combination therapy for AML patients.

"We found that the cancer was damaging the walls of blood vessels responsible for delivering oxygen, nutrients, and chemotherapy. When we used drugs to stop the leaks in mice, we were able to kill the cancer using conventional chemotherapy," says Diana Passaro, first author of the paper and researcher at the Francis Crick Institute.

As the drugs are already in clinical trials for other conditions, it is hoped that they could be given the green light for AML patients in the future.

AML is relatively rare - approximately 2,600 people are diagnosed in the UK each year - but as it mainly affects people over 65, prevalence is likely to increase with an ageing population. It is a particularly aggressive cancer, with fewer than a quarter of patients living for five years after diagnosis.* Chemotherapy resistance and relapse are a major problem in treating the disease.

To study how AML affects bone marrow, the team injected mice with bone marrow from AML patients. Later, they compared their bone marrow with healthy mice using a technique called intravital microscopy that allows you to see biological processes in live animals. They found that pre-loaded fluorescent dyes leaked out of the bone marrow blood vessels in AML mice, but not healthy mice.

Next, the team tried to understand what caused the bone marrow in AML mice to become leaky by studying molecular changes in the cells lining the blood vessels. They found that they were oxygen-starved compared to healthy mice, likely because AML cells use up a lot of oxygen in the surrounding tissue. In response to a reduction in oxygen, there was an increase in nitric oxide (NO) production - a molecule that usually alerts the body to areas of low oxygen.

As NO is a muscle relaxant, the team suspected that it might be causing bone marrow leakiness by loosening the tight seams between cells, allowing blood to escape through the gaps. By blocking the production of NO using drugs, the team were able to restore bone marrow blood vessels in AML mice, preventing blood from leaking out. Mice given NO blockers in combination with chemotherapy had much slower leukemia progression and stayed in remission much longer than mice given chemotherapy alone.

"When the vessels are leaky, bone marrow blood flow becomes irregular and leukemia cells can easily find places to hide and escape chemotherapy drugs," says Diana. "Leaky vessels also prevent oxygen reaching parts of the bone marrow, which contributes to more NO production and leakiness."

"By restoring normal blood flow with NO blockers, we ensure that chemotherapy actually reaches the leukemia cells, so that therapy works properly."

In addition to ensuring that chemotherapy drugs reach their targets, the team also found that NO blockers boosted the number of stem cells in the bone marrow. This may also improve treatment outcomes by helping healthy cells to out-compete cancerous cells.

The team also found that bone marrow biopsies from AML patients had higher NO levels than those from healthy donors, and failure to reduce NO levels was associated with chemotherapy failure.

"Our findings suggest that it might be possible to predict how well people with AML will respond to chemotherapy," says Dominique Bonnet, senior author of the paper and Group Leader at the Francis Crick Institute.

"We've uncovered a biological marker for this type of leukemia as well as a possible drug target. The next step will be clinical trials to see if NO blockers can help AML patients as much as our pre-clinical experiments suggest."

###

*Figures from Cancer Research UK: http://www.cancerresearchuk.org/about-cancer/acute-myeloid-leukaemia-aml/survival

Media Contact

Greta Keenan
press@crick.ac.uk
020-379-65252

 @thecrick

http://www.crick.ac.uk 

Greta Keenan | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>