Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery

28.05.2015

Chemists at the University of Waterloo have discovered the key reaction that takes place in sodium-air batteries that could pave the way for development of the so-called holy grail of electrochemical energy storage.

Researchers from the Waterloo Institute for Nanotechnology, led by Professor Linda Nazar who holds the Canada Research Chair in Solid State Energy Materials, have described a key mediation pathway that explains why sodium-oxygen batteries are more energy efficient compared with their lithium-oxygen counterparts.


Chemists at the University of Waterloo have discovered the key reaction that takes place in sodium-air batteries that could pave the way for development of the so-called holy grail of electrochemical energy storage. The key lies in Nazar's group discovery of the so-called proton phase transfer catalyst. By isolating its role in the battery's discharge and recharge reactions, Nazar and colleagues were not only able to boost the battery's capacity, they achieved a near-perfect recharge of the cell. When the researchers eliminated the catalyst from the system, they found the battery no longer worked. Unlike the traditional solid-state battery design, a metal-oxygen battery uses a gas cathode that takes oxygen and combines it with a metal such as sodium or lithium to form a metal oxide, storing electrons in the process. Applying an electric current reverses the reaction and reverts the metal to its original form.

Credit: University of Waterloo

Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which is has been seen as the holy grail of electrochemical energy storage.

Their results appear in the journal Nature Chemistry.

"Our new understanding brings together a lot of different, disconnected bits of a puzzle that have allowed us to assemble the full picture," says Nazar, a Chemistry professor in the Faculty of Science. "These findings will change the way we think about non-aqueous metal-oxygen batteries."

Sodium-oxygen batteries are considered by many to be a particularly promising metal-oxygen battery combination. Although less energy dense than lithium-oxygen cells, they can be recharged with more than 93 per cent efficiency and are cheap enough for large-scale electrical grid storage.

The key lies in Nazar's group discovery of the so-called proton phase transfer catalyst. By isolating its role in the battery's discharge and recharge reactions, Nazar and colleagues were not only able to boost the battery's capacity, they achieved a near-perfect recharge of the cell. When the researchers eliminated the catalyst from the system, they found the battery no longer worked.

Unlike the traditional solid-state battery design, a metal-oxygen battery uses a gas cathode that takes oxygen and combines it with a metal such as sodium or lithium to form a metal oxide, storing electrons in the process. Applying an electric current reverses the reaction and reverts the metal to its original form.

In the case of the sodium-oxygen cell, the proton phase catalyst transfers the newly formed sodium superoxide (NaO2) entities to solution where they nucleate into well-defined nanocrystals to grow the discharge product as micron-sized cubes. The dimensions of the initially formed NaO2 are critical; theoretical calculations from a group at MIT has separately shown that NaO2 is energetically preferred over sodium peroxide, Na2O2 at the nanoscale. When the battery is recharged, these NaO2 cubes readily dissociate, with the reverse reaction facilitated once again by the proton phase catalyst.

Chemistry says that the proton phase catalyst could work similarly with lithium-oxygen. However, the lithium superoxide (LiO2) entities are too unstable and convert immediately to lithium peroxide (Li2O2). Once Li2O2 forms, the catalyst cannot facilitate the reverse reaction, as the forward and reverse reactions are no longer the same. So, in order to achieve progress on lithium-oxygen systems, researchers need to find an additional redox mediator to charge the cell efficiently.

"We are investigating redox mediators as well as exploring new opportunities for sodium-oxygen batteries that this research has inspired," said Nazar."Lithium-oxygen and sodium-oxygen batteries have a very promising future, but their development must take into account the role of how high capacity - and reversibility - can be scientifically achieved."

###

Postdoctoral research associate Chun Xia along with doctoral students Robert Black, Russel Fernandes, and Brian Adams co-authored the paper.

The ecoENERGY Innovation Initiative program of Natural Resources Canada, and the Natural Sciences and Engineering Research Council (NSERC) of Canada funded the project.

Media Contact

Nick Manning
nmanning@uwaterloo.ca
226-929-7627

 @uWaterlooNews

http://www.uwaterloo.ca/ 

Nick Manning | EurekAlert!

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>