Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Create Clusters of Organelles by Mimicking Nature

02.11.2016

Scientists from the University of Basel have succeeded in organizing spherical compartments into clusters mimicking the way natural organelles would create complex structures. They managed to connect the synthetic compartments by creating bridges made of DNA between them. This represents an important step towards the realization of so-called molecular factories. The journal Nano Letters has published their results.

Within a cell there are specialized compartments called organelles, as for example nucleus, mitochondria, peroxisomes and vacuoles that are responsible for specific functions of the cell. Almost all sophisticated biological functions of cells are realized by self-organization, a process by which molecules adopt a defined arrangement based on their specific conformations and properties, without outside guidance.


Two polymersomes assemble by DNA hybridization: the single DNA strands on the surface of the compartments interconnect, creating an extremely stable DNA bridge.

University of Basel

Using self-organization of nano-objects into complex architectures is a major strategy to produce new materials with improved properties or functionalities in fields such as chemistry, electronics and technology. For example, this strategy has already been applied to create networks of inorganic solid nanoparticles. However, so far, these networks were not able to mimic sophisticated structures that have biological functions within the cells and thus have potential application in medicine or biology.

DNA bridges give stability

The joint research of the groups led by the professors Cornelia Palivan and Wolfgang Meier now provides a new approach to self-organize artificial organelles into clusters that mimics the connection between their natural counterparts. By using single DNA strands to interconnect the spherical compartments the scientists succeeded in creating clusters according to a specific architecture and controlled properties. «We were excited to see, that the different DNA strands on the surface of the spherical compartment migrated together and formed a bridge with the DNA strands from the next one», says Palivan. This DNA bridge represents an extremely stable connection.

This strategy inspired by nature goes beyond the actual self-organization approaches, since it also allows the integration of various requirements such as the fine tuning of the distance between the compartments or different topologies “on demand”. As compartments, the scientists used polymersomes, with a synthetic membrane that, unlike liposomes, has the great advantage of being very stable and controlling the fusing of individual compartments within the cell.

An additional unique advantage of this strategy to organize nano-clusters is the fact that the compartments can be loaded with reaction partners such as enzymes, proteins or catalysts. This gives the basis for the further engineering of artificial organelles serving as molecular factories. This research was done within the National Centre of Competence in Research (NCCR) Molecular Systems Engineering.

Original source

Juan Liu, Viktoriia Postupalenko, Samuel Lörcher, Dalin Wu, Mohamed Chami, Wolfgang Meier, Cornelia G. Palivan
DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles
Nano Letters, 2016, Advance article: DOI :10.1021/nanolett.6b03430.

Further information
Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 267 38 39. E-Mail: Cornelia.Palivan@unibas.ch


Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: DNA DNA strands biological functions organelles

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>