Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Create Clusters of Organelles by Mimicking Nature

02.11.2016

Scientists from the University of Basel have succeeded in organizing spherical compartments into clusters mimicking the way natural organelles would create complex structures. They managed to connect the synthetic compartments by creating bridges made of DNA between them. This represents an important step towards the realization of so-called molecular factories. The journal Nano Letters has published their results.

Within a cell there are specialized compartments called organelles, as for example nucleus, mitochondria, peroxisomes and vacuoles that are responsible for specific functions of the cell. Almost all sophisticated biological functions of cells are realized by self-organization, a process by which molecules adopt a defined arrangement based on their specific conformations and properties, without outside guidance.


Two polymersomes assemble by DNA hybridization: the single DNA strands on the surface of the compartments interconnect, creating an extremely stable DNA bridge.

University of Basel

Using self-organization of nano-objects into complex architectures is a major strategy to produce new materials with improved properties or functionalities in fields such as chemistry, electronics and technology. For example, this strategy has already been applied to create networks of inorganic solid nanoparticles. However, so far, these networks were not able to mimic sophisticated structures that have biological functions within the cells and thus have potential application in medicine or biology.

DNA bridges give stability

The joint research of the groups led by the professors Cornelia Palivan and Wolfgang Meier now provides a new approach to self-organize artificial organelles into clusters that mimics the connection between their natural counterparts. By using single DNA strands to interconnect the spherical compartments the scientists succeeded in creating clusters according to a specific architecture and controlled properties. «We were excited to see, that the different DNA strands on the surface of the spherical compartment migrated together and formed a bridge with the DNA strands from the next one», says Palivan. This DNA bridge represents an extremely stable connection.

This strategy inspired by nature goes beyond the actual self-organization approaches, since it also allows the integration of various requirements such as the fine tuning of the distance between the compartments or different topologies “on demand”. As compartments, the scientists used polymersomes, with a synthetic membrane that, unlike liposomes, has the great advantage of being very stable and controlling the fusing of individual compartments within the cell.

An additional unique advantage of this strategy to organize nano-clusters is the fact that the compartments can be loaded with reaction partners such as enzymes, proteins or catalysts. This gives the basis for the further engineering of artificial organelles serving as molecular factories. This research was done within the National Centre of Competence in Research (NCCR) Molecular Systems Engineering.

Original source

Juan Liu, Viktoriia Postupalenko, Samuel Lörcher, Dalin Wu, Mohamed Chami, Wolfgang Meier, Cornelia G. Palivan
DNA-mediated self-organization of polymeric nanocompartments leads to interconnected artificial organelles
Nano Letters, 2016, Advance article: DOI :10.1021/nanolett.6b03430.

Further information
Cornelia G. Palivan, Universität Basel, Departement Chemie, Tel. +41 61 267 38 39. E-Mail: Cornelia.Palivan@unibas.ch


Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: DNA DNA strands biological functions organelles

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>