Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemically camouflaged wasps

18.12.2015

A special camouflage allows parasitic wasps to raid the nests of host species. The affected hosts seem to have responded to that in the course of evolution as Würzburg biologists report.

Certain wasp species behave similar to cuckoos: They intrude into other nests, destroy the offspring, deposit their own eggs and leave their larvae to feed on the host's food provisions. Actually, the involuntary hosts are supposed to detect the intruders: All insects are covered by a layer of cuticular hydrocarbon molecules that always leave a "scent trail" behind. But the parasitic wasps are camouflaged efficiently: Mimicking their hosts' scent profile, they become invisible.


Three parasitic species of cuckoo wasps at the same time have targeted the food provisions in the nests of mason wasps.

Pictures: Oliver Niehuis, ZFMK Bonn

Professor Thomas Schmitt from the University of Würzburg's Biocenter is studying a particular case of parasitic wasps: The spiny mason wasp (Odynerus spinipes) is native to Central Europe. It is a solitary wasp species that builds its nests in the ground and serves as a host to three species of cuckoo wasps at the same time. That is unusual since the parasitic relationships of cuckoo wasps usually involve exactly one parasite for one host.

Results published with the Royal Society

How can the three-parasite system work without them getting into the way of one another? Schmitt and his Ph.D. student Mareike Wurdack looked into this question and discovered something unexpected in the host wasps' camouflage. The results have been published in the magazine "Proceedings of the Royal Society".

One of the three parasitic cuckoo wasp species (Chrysis viridula) goes its very own way: It waits until the mason wasp has laid its eggs, supplied food provisions and sealed the nest. The offspring will develop independently; the owner of the nest never returns. This means the way is free for the parasitic wasp: It digs up the nest and lays its eggs inside. This strategy does not require any camouflaging and consequently this cuckoo wasp's hydrocarbon profile clearly differs from that of the mason wasp.

Two different types of camouflage deceive the same host

The other two cuckoo wasp species (Chrysis mediata, Pseudospinolia neglecta) take a different approach. Entering the host nest before it is sealed, they and their eggs go undetected, because they have the same "body odour" as the owner of the nest. At this point, the Würzburg biologists discovered something baffling: The two parasites do not have the same body scent, rather they differ significantly.

So the scientists checked the hydrocarbon profiles of the mason wasps and found that they, too, had two "chemotypes": "The hosts produce either the one or the other type and the parasites have specialised accordingly," says Schmitt. This finding was confirmed in all three areas the biologists studied: near Würzburg, at the Kaiserstuhl hills near Freiburg and in the Palatinate.

Theory of the evolution of chemical camouflaging

"Our results back the theory that the similarity of the hydrocarbon profiles of cuckoo wasps and their hosts are caused by chemical camouflaging," says Mareike Wurdack. "We also assume that a second chemotype developed in the mason wasp during evolution with the goal to escape parasitic infestation," Schmitt explains. Too bad for the wasp that another parasite adjusted to this evasive strategy.

Teaming up with Oliver Niehuis from Bonn (Research Museum Koenig / Leibniz Institute for Animal Biodiversity), Thomas Schmitt will investigate whether this evolutionary-biological scenario and the molecular mechanisms for creating the chemotypes are true in the next three years. The German Research Foundation (Deutsche Forschungsgemeinschaft DFG) has recently approved a corresponding application by the two scientists.

Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae): Mareike Wurdack, Sina Herbertz, Daniel Dowling, Johannes Kroiss, Erhard Strohm, Hannes Baur, Oliver Niehuis, and Thomas Schmitt. Proceedings of the Royal Society, 16 December 2015, DOI: 10.1098/rspb.2015.1777

Thomas Schmitt’s website: http://www.zoo3.biozentrum.uni-wuerzburg.de/team/schmitt

Contact

Mareike Wurdack, Prof. Dr. Thomas Schmitt, Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, Phone +49 931 31-84188, thomas.schmitt@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>