Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemically camouflaged wasps

18.12.2015

A special camouflage allows parasitic wasps to raid the nests of host species. The affected hosts seem to have responded to that in the course of evolution as Würzburg biologists report.

Certain wasp species behave similar to cuckoos: They intrude into other nests, destroy the offspring, deposit their own eggs and leave their larvae to feed on the host's food provisions. Actually, the involuntary hosts are supposed to detect the intruders: All insects are covered by a layer of cuticular hydrocarbon molecules that always leave a "scent trail" behind. But the parasitic wasps are camouflaged efficiently: Mimicking their hosts' scent profile, they become invisible.


Three parasitic species of cuckoo wasps at the same time have targeted the food provisions in the nests of mason wasps.

Pictures: Oliver Niehuis, ZFMK Bonn

Professor Thomas Schmitt from the University of Würzburg's Biocenter is studying a particular case of parasitic wasps: The spiny mason wasp (Odynerus spinipes) is native to Central Europe. It is a solitary wasp species that builds its nests in the ground and serves as a host to three species of cuckoo wasps at the same time. That is unusual since the parasitic relationships of cuckoo wasps usually involve exactly one parasite for one host.

Results published with the Royal Society

How can the three-parasite system work without them getting into the way of one another? Schmitt and his Ph.D. student Mareike Wurdack looked into this question and discovered something unexpected in the host wasps' camouflage. The results have been published in the magazine "Proceedings of the Royal Society".

One of the three parasitic cuckoo wasp species (Chrysis viridula) goes its very own way: It waits until the mason wasp has laid its eggs, supplied food provisions and sealed the nest. The offspring will develop independently; the owner of the nest never returns. This means the way is free for the parasitic wasp: It digs up the nest and lays its eggs inside. This strategy does not require any camouflaging and consequently this cuckoo wasp's hydrocarbon profile clearly differs from that of the mason wasp.

Two different types of camouflage deceive the same host

The other two cuckoo wasp species (Chrysis mediata, Pseudospinolia neglecta) take a different approach. Entering the host nest before it is sealed, they and their eggs go undetected, because they have the same "body odour" as the owner of the nest. At this point, the Würzburg biologists discovered something baffling: The two parasites do not have the same body scent, rather they differ significantly.

So the scientists checked the hydrocarbon profiles of the mason wasps and found that they, too, had two "chemotypes": "The hosts produce either the one or the other type and the parasites have specialised accordingly," says Schmitt. This finding was confirmed in all three areas the biologists studied: near Würzburg, at the Kaiserstuhl hills near Freiburg and in the Palatinate.

Theory of the evolution of chemical camouflaging

"Our results back the theory that the similarity of the hydrocarbon profiles of cuckoo wasps and their hosts are caused by chemical camouflaging," says Mareike Wurdack. "We also assume that a second chemotype developed in the mason wasp during evolution with the goal to escape parasitic infestation," Schmitt explains. Too bad for the wasp that another parasite adjusted to this evasive strategy.

Teaming up with Oliver Niehuis from Bonn (Research Museum Koenig / Leibniz Institute for Animal Biodiversity), Thomas Schmitt will investigate whether this evolutionary-biological scenario and the molecular mechanisms for creating the chemotypes are true in the next three years. The German Research Foundation (Deutsche Forschungsgemeinschaft DFG) has recently approved a corresponding application by the two scientists.

Striking cuticular hydrocarbon dimorphism in the mason wasp Odynerus spinipes and its possible evolutionary cause (Hymenoptera: Chrysididae, Vespidae): Mareike Wurdack, Sina Herbertz, Daniel Dowling, Johannes Kroiss, Erhard Strohm, Hannes Baur, Oliver Niehuis, and Thomas Schmitt. Proceedings of the Royal Society, 16 December 2015, DOI: 10.1098/rspb.2015.1777

Thomas Schmitt’s website: http://www.zoo3.biozentrum.uni-wuerzburg.de/team/schmitt

Contact

Mareike Wurdack, Prof. Dr. Thomas Schmitt, Department of Animal Ecology and Tropical Biology (Zoology III), University of Würzburg, Phone +49 931 31-84188, thomas.schmitt@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>