Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in a single gene's action can control addiction and depression-related behaviors

11.11.2014

New DNA regulatory technique modifies the environment around a single gene to control gene expression and behavioral consequences

Regulation of a single, specific gene in a brain region related to drug addiction and depression is sufficient to reduce drug and stress responses, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published October 27 online in the journal Nature Neuroscience.

The Mount Sinai study focuses on epigenetics, the study of changes in the action of human genes caused, not by changes in DNA code we inherit from our parents, but instead by molecules that regulate when, where and to what degree our genetic material is activated.

Previous research has found links between epigenetic regulation and the diseases of drug addiction and depression, in both human patients and animal models. Such regulation derives, in part, from the function of transcription factors, specialized proteins that bind to specific DNA sequences and either encourage or shut down the expression of a given gene.

Using mouse models of human depression, stress and addiction, the current research team introduced synthetic- transcription factors into a brain region called the nucleus accumbens at a single gene called FosB, which has been linked by past studies to both addiction and depression. They found that changes to this single gene brought on by the transcription factors made the study mice more resilient to stress and less likely to become addicted to cocaine.

Found in every cell of the body, DNA contains genes and the instructions needed for an organism to develop and survive. To carry out these functions, DNA sequences are converted into messages that "tell" cells which proteins to make, dictating the specific function of a given cell. While all cells contain the DNA that codes for every gene, most genes are not activated at all times.

The expression of a given gene depends on the action of transcription factors, proteins that regulate the structure of DNA within the cell, allowing some genes to be active and others to be repressed. Transcription factors act by epigenetic mechanisms: chemically modifying either the DNA itself, or the histone proteins packaged around DNA that change shape given the right signal to make stretches of DNA available to the protein building machinery.

"Earlier work in our laboratory found that several transcription factors and downstream epigenetic modifications are altered by exposure to drugs or to stress and that these changes, in turn, control gene expression," says Eric J. Nestler, MD, PhD, Nash Family Professor, Chair of the Department of Neuroscience and Director of the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai, who led the study. "But because such epigenetic regulation occurs at hundreds or thousands of genes, until now it had been impossible to determine the difference between the mere presence of an epigenetic modification and its functional relevance to neuropsychiatric disease."

To directly address this issue, Elizabeth A Heller, PhD, lead author on the paper, developed an innovative method to control epigenetic regulation of FosB. Dr. Heller introduced synthetic transcription factors called Zinc Finger Proteins (ZFPs), designed to target only a single gene out of 20,000, by incorporating them into a virus and injecting that virus into the reward-related brain region. Study results indicate that upon binding to that one gene, the FosB-ZFPs modified histones in the vicinity of the FosB gene, in order to either activate (turn on) or repress (turn off) expression.

Expression of the FosB gene in nerve cells is both necessary and sufficient for drug and stress responsiveness in mice. In particular, activation of FosB expression is linked to increased sensitivity to drugs and to resilience to stress and is altered by exposure to such stimuli in the brains of mouse models and in drug-addicted and depressed human patients.

"While drug addiction and depression are hereditary diseases that regulate gene expression in the brain, the field has yet to uncover relevant mutations in gene sequence that underlie these disorders," says Dr. Heller. "Therefore, we focused on changes in gene structure to probe the mechanism of action of such changes in drug and stress sensitivity Our data is a critical first step towards developing novel therapeutics to combat these neuropsychiatric diseases. In addition, the use of engineered transcription factors has broad implications outside of neuroscience because epigenetic gene regulation underlies many diseases, including most forms of cancer."

Researchers from the Massachusetts Institute of Technology and the University of Texas Southwestern Medical Center at Dallas contributed to the study.

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12 minority owned freestanding ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org , or find Mount Sinai on Facebook, Twitter and YouTube.

Elizabeth Dowling | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>