Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular extensions with a large effect

06.11.2014

Study explains the link between cilia and diabetes

Tiny extensions on cells, cilia, play an important role in insulin release, according to a new study, which is published in Nature Communications. The researchers report that the cilia of beta cells in the pancreas are covered with insulin receptors and that changed ciliary function can be associated with the development of type 2 diabetes.

Cilia are tiny extensions on cells and they are credited with many important functions, including transduction of signals in cells. Defects in cilia have been implied in several diseases and pathological conditions. Thus, scientists at Karolinska Institutet in Stockholm, University College London and the Helmholtz Zentrum München (HMGU) took interest in the role of cilia in blood glucose regulation and type 2-diabetes.

"It has been known for some time that the rate of type 2 diabetes is above average in people with ciliopathy, which is a pathological ciliary dysfunction", says Jantje Gerdes, previously at Karolinska Institutet and now at the Institute of Diabetes and Regeneration Research at the HMGU, first author of the study. "Our results confirm this observation and additionally explain how cilia are linked to glucose metabolism and diabetes."

The researchers investigated the function of ciliary cell extensions in the insulin-secreting pancreatic beta cells. Insulin is the hormone that reduces blood glucose levels. When the investigators stimulated the beta cells with glucose the number of insulin receptors on their cilia increased. When circulating insulin binds to the receptors it stimulates the release of more insulin into the blood. The cilia consequently play an important role in the release and signal transduction of insulin.

The investigators also studied what happens when the cilia are defective. They found that in mice with few or defective cilia the insulin release was reduced and the animals had significantly elevated blood glucose levels.

"Ciliary dysfunction and defective glucose utilization are directly linked", says Per-Olof Berggren at the Rolf Luft Research Center for Diabetes and Endocrinology at Karolinska Institutet, principal investigator of the study. "Ciliopathies therefore have a potential function as models in the investigation of many still unknown mechanisms that underlie diabetes."

The research was supported by, among others, grants from the Swedish Research Council, the Novo Nordisk Foundation, the European Research Council, The Family Erling-Persson Foundation, the Knut and Alice Wallenberg Foundation, and the Stichting af Jochnick Foundation.

Publication: 'Ciliary dysfunction impairs pancreatic insulin secretion and promotes development of type 2 diabetes in rodents', Jantje M. Gerdes, Sonia Christou-Savina, Yan Xiong, Tilo Moede, Noah Moruzzi, Patrick Karlsson-Edlund, Barbara Leibiger, Ingo B. Leibiger, Claes-Göran Östenson, Philip L. Beales, and Per-Olof Berggren, Nature Communications, online 6 November 2014, doi: 10.1038/ncomms6308.

Contact the Press Office: ki.se/pressroom

Karolinska Institutet - a medical university: ki.se/english

Press Office | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>