Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells migrate collectively by intermittent bursts of activity

30.09.2016

Cell migration is a central process in the development and maintenance of multicellular organisms. Researchers of Aalto University and their research partners have now discovered that this motion occurs by intermittent bursts of activity. It can be described by universal scaling laws similar to the ones observed in other driven systems outside of biology.

When you have got a wound and it starts healing, cells start to migrate in your body to the wound. They are driven by active internal forces to invade the available space. Cell migration doesn't only take place when you are getting better. In cancer invasion cells also migrate collectively.


This is how cells are migrating. He-La cells - the oldest and most commonly used human cell line - on collagen substrate: time evolution of the front superimposed on the first frame of experiment. Credit: Oleksandr Chepizhko / Aalto University

Tissue formation during embryonic development requires the orchestrated movement of cells to specific locations. In general, cell migration is a central process in the development and maintenance of multicellular organisms.

Researchers of Aalto University and their research partners have now discovered that this motion occurs by intermittent bursts of activity. It can be described by universal scaling laws similar to the ones observed in other driven systems outside of biology.

- Our results demonstrate that living systems display universal non-equilibrium critical fluctuations, induced by cell mutual interactions, that are usually associated to externally driven inanimate media, says Oleksandr Chepizhko, Postdoctoral Researcher at Aalto University.

Researchers substantiated the analogy between collective cell migration and depinning by revealing and characterizing widely distributed bursts of activity in the collective migration of different types cells over different substrates and experimental conditions.

After that, they compared the experiments with simulations of a computational model of active particles. They found that in all these cases the statistical properties of the bursts follow universal scaling laws that are quantitatively similar to those observed in driven disordered systems.

Errors during cell migration may have serious consequences. For instance, errors may cause vascular disease, intellectual disability, metastasis or tumor formation. Increased understanding of the mechanism by which cells migrate may lead to the development of new therapeutic strategies for controlling, for example, invasive tumour cells.

Full bibliographic information

Oleksandr Chepizhko et al.: Bursts of activity in collective cell migration. PNAS 2016. DOI 10.1073/pnas.0709640104

Notes for editors

For more information:
Mikko Alava
Professor, Department of Applied Physics, School of Science, Aalto University
mikko.alava@aalto.fi
https://people.aalto.fi/new/mikko.alava

Tweet: Cells migrate collectively by intermittent bursts of activity @aaltouniversity DOI 10.1073/pnas.0709640104

Visa Noronen | AlphaGalileo

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>