Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells communicate in a dynamic code


A critically important intercellular communication system is found to encode and transmit more messages than previously thought.

Multicellular organisms like ourselves depend on a constant flow of information between cells, coordinating their activities in order to proliferate and differentiate. Deciphering the language of intercellular communication has long been a central challenge in biology. Now, Caltech scientists have discovered that cells have evolved a way to transmit more messages through a single pathway, or communication channel, than previously thought, by encoding the messages rhythmically over time.

This is an artist's concept of a cell expressing the Delta1 ligand (left) and a cell expressing the Delta4 ligand (right). While these two ligands activate cellular receptors in the same way, they do so in different patterns over time. In this way, a receiving cell can decode instructions.

Credit: Caltech

The work, conducted in the laboratory of Michael Elowitz, professor of biology and bioengineering, Howard Hughes Medical Institute Investigator, and executive officer for Biological Engineering, is described in a paper in the February 8 issue of Cell.

In particular, the scientists studied a key communication system called "Notch," which is used in nearly every tissue in animals. Malfunctions in the Notch pathway contribute to a variety of cancers and developmental diseases, making it a desirable target to study for drug development.

Cells carry out their conversations using specialized communication molecules called ligands, which interact with corresponding molecular antennae called receptors. When a cell uses the Notch pathway to communicate instructions to its neighbors--telling them to divide, for example, or to differentiate into a different kind of cell--the cell sending the message will produce certain Notch ligands on its surface. These ligands then bind to Notch receptors embedded in the surface of nearby cells, triggering the receptors to release gene-modifying molecules called transcription factors into the interior of their cell. The transcription factors travel to the cell's nucleus, where the cell's DNA is stored, and activate specific genes. The Notch system thus allows cells to receive signals from their neighbors and alter their gene expression accordingly.

Ligands prompt the activation of transcription factors by modifying the structure of the receptors into which they dock. All ligands modify their receptors in a similar way and activate the same transcription factors in a receiving cell, and for that reason, scientists generally assumed that the receiving cell should not be able to reliably determine which ligand had activated it, and hence which message it had received.

"At first glance, the only explanation for how cells distinguish between two ligands, if at all, seems to be that they must somehow accurately detect differences in how strongly the two ligands activate the receptor. However, all evidence so far suggests that, unlike mobile phones or radios, cells have much more trouble precisely analyzing incoming signals," says lead author and former Elowitz lab graduate student Nagarajan (Sandy) Nandagopal (PhD '18). "They are usually excellent at distinguishing between the presence or absence of signal, but not very much more. In this sense, cellular messaging is closer to sending smoke signals than texting. So, the question is, as a cell, how do you differentiate between two ligands, both of which look like similar puffs of smoke in the distance?"

Nandagopal and his collaborators wondered whether the answer lay in the temporal pattern of Notch activation by different ligands--in other words, how the "smoke" is emitted over time. To test this, the team developed a new video-based system through which they could record signaling in real time in each individual cell. By tagging the receptors and ligands with fluorescent protein markers, the team could watch how the molecules interacted as signaling was occurring.

The team studied two chemically similar Notch ligands, dubbed Delta1 and Delta4. They discovered that despite the ligands' similarity the two activated the same receptor with strikingly different temporal patterns. Delta1 ligands activated clusters of receptors simultaneously, sending a sudden burst of transcription factors down to the nucleus all at once, like a smoke signal consisting of a few giant puffs. On the other hand, Delta4 ligands activated individual receptors in a sustained manner, sending a constant trickle of single transcription factors to the nucleus, like a steady stream of smoke.

These two patterns are the key to encoding different instructions to the cell, the researchers say. In fact, this mechanism enabled the two ligands to communicate dramatically different messages. By analyzing chick embryos, the authors discovered that Delta1 activated abdominal muscle production, whereas Delta4 strongly inhibited this process in the same cells.

"Cells speak only a handful of different molecular languages but they have to work together to carry out an incredible diversity of tasks," says Elowitz. "We've generally assumed these languages are extremely simple, and cells can basically only grunt at each other. By watching cells in the process of communicating, we can see that these languages are more sophisticated and have a larger vocabulary than we ever thought. And this is probably just the tip of an iceberg for intercellular communication."


The paper is titled "Dynamic Ligand Discrimination in the Notch Signaling Pathway." In addition to Nandagopal and Elowitz, other Caltech co-authors are Leah Santat, who is also a Howard Hughes Medical Institute Investigator, and Marianne Bronner, the Albert Billings Ruddock Professor of Biology. Additional co-authors are Lauren LeBon of Calico Life Sciences and David Sprinzak of Tel Aviv University. Funding was provided by the Defense Advanced Research Projects Agency, the National Institutes of Health, the National Science Foundation, and the Howard Hughes Medical Institute.

Media Contact

Lori Dajose


Lori Dajose | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>