Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caught in the act: New wasp species emerging


'Apple maggot' divergence is creating 3 new wasp species

The concept that biodiversity feeds upon itself is an old idea, but it's difficult to prove because it requires biologists to simultaneously catch several species red-handed just as they are becoming new species. Now biologists have proof.

A Rhagoletis pomonella fly explores the derived host fruit, an apple.

Credit: Andrew Forbes

A new study from biologists at Rice University, the University of Notre Dame, Michigan State University, the University of Iowa and the University of Florida finds that ongoing evolutionary changes in one fruit fly species are having a domino effect on at least three species of predatory wasps. The researchers focused on the jump of a native North American fruit fly onto apple trees in the 1850s.

"Our study addresses one of the central questions in biology: How do new forms of life originate?" said evolutionary biologist Scott Egan, assistant professor of biosciences at Rice and a co-author of the new study, which is available online in the Proceedings of the National Academy of Sciences.

The study follows up previous research by Egan and colleagues of the fruit fly Rhagoletis pomonella, aka the "apple maggot," which began plaguing U.S. apple growers in the 1850s. That work showed that changes in feeding and mating habits of Rhagoletis are driving it to become two different species.

"Our new work takes a close look at the evolutionary process termed 'sequential speciation,'" Egan said. "Sequential speciation identifies the fact that adaptation and speciation of one species is not an isolated process. The appearance of a new species creates new niche opportunities that can be exploited by other species, and that opportunity can promote the origin of other new species."

Rhagoletis is in the act of evolving into two species. The change is driven by differently timed fruiting cycles between apple trees, which some Rhagoletis prefer, and the North American hawthorn, the native fruit where Rhagoletis have traditionally laid their eggs. In extending their work on Rhagoletis speciation, the researchers focused on three species of wasps that are known parasites for Rhagoletis.

Wasps were collected from a number of different fly host plant environments in the wild. Analyses showed that all three wasp species were also in the process of diverging into two distinct species, both genetically and with respect to host-associated physiology and behavior.

"The new study extends the earlier work by showing that new fruit fly species provide suitable habitat not just for one new parasitoid species, but for multiple new species," said study co-author James Smith, a Michigan State entomologist.

These evolutionary changes, which are known as "sequential" or "cascading" events, may provide additional information to help biologists explain why certain organisms like plants and insects are more diverse and species-rich than other groups are.

"Why are there so many insect species?" Smith asked. "Speciation cascades provide one explanation for how a lot of species might be generated in a relatively short period of time."

Glen Hood, a Ph.D. student at Notre Dame and lead author of the paper, said, "Our study has impacted our understanding of evolution by suggesting that change in individual lineages can reverberate through different trophic levels of an ecosystem and increase community-level biodiversity."


Additional co-authors include Notre Dame's Jeffrey Feder, Iowa's Andrew Forbes and Gabriela Hamerlinck, and Florida's Thomas Powell. The research was supported by the National Science Foundation, the Indiana Academy of Science, the Entomological Society of America and Sigma Xi.

High-resolution IMAGES are available for download at:
CAPTION: The parasitic wasp, Utetes canaliculatus, on a snowberry shrub, searching for its Rhagoletis fly host.
CREDIT: Hannes Schuler
CAPTION: A Rhagoletis pomonella fly explores the derived host fruit, an apple.
CREDIT: Andrew Forbes
CAPTION: Scott Egan
CREDIT: Jeff Fitlow/Rice University

A copy of the PNAS paper is available at:

Related Rice research:

Evolution study finds massive genome shift in one generation -- June 15, 2015

This release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Media Contact

Jade Boyd


Jade Boyd | EurekAlert!

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>